找到 1 条结果 · Applied Energy

排序:
储能系统技术 储能系统 模型预测控制MPC ★ 5.0

结合数据校正的模型预测控制在LHTES功率调控中的应用:数据中心部署与案例研究

Model predictive control incorporating data correction for LHTES power controlling: Deployment and case study in data center

Jiacheng Gaoa · Yanlong Lva · Lejun Feng · Jun Sui 等5人 · Applied Energy · 2025年1月 · Vol.401

摘要 相变潜热储能(LHTES)技术可通过利用可再生能源和实现削峰填谷,有效降低数据中心的冷却能耗。然而,由于缺乏适用于实际工程应用的放电功率控制方法,该技术的大规模推广应用受到限制。为应对这一挑战,本研究采用结合数据校正的模型预测控制(MPC)策略,解决LHTES系统的功率控制难题,并在中国某数据中心冷却系统改造项目中进行了验证。首先设计了一种高效的LHTES装置,并通过一系列充/放热实验表征其储热特性。基于装置结构建立了温度场模型,利用传热流体与相变材料(PCM)温度的实验数据进行复合参数辨...

解读: 该LHTES相变储能MPC控制技术对阳光电源ST系列储能系统和数据中心解决方案具有重要参考价值。研究中采用的模型预测控制结合卡尔曼滤波数据校正方法,可借鉴应用于PowerTitan液冷储能系统的热管理优化,将功率控制误差降至3%以内。特别是在数据中心场景实现21.5%节能和60.3%成本削减的案例,...