找到 2 条结果 · Applied Energy

排序:
光伏发电技术 ★ 5.0

一种用于大型光伏电站中精确高效辐射传输建模的新型参数化方案

A novel parameterization scheme for accurate and efficient radiation transfer modeling in large-scale PV power plants

Xinyao Zhang · Kun Yang · Changkun Shao · Haochong Chen · Applied Energy · 2025年1月 · Vol.384

摘要 随着技术的进步,双面光伏(PV)组件已在大型光伏电站中广泛应用。准确且高效地计算双面组件背面吸收的太阳辐射仍是一个关键挑战。基于视角因子的二维简化方法为这类大规模应用提供了高速计算途径,但忽略了组件安装高度的影响,从而导致模拟偏差。本研究提出了一种用于大型光伏电站中太阳辐射传输建模的新型参数化方案(PVRT)。该PVRT方案考虑了组件高度因素,能够在多种辐射情景和系统配置下,对光伏组件正反两面以及地表表面的辐射吸收进行高效且精确的计算。通过与采用Helios光线追踪模型的高精度模拟结果进行...

解读: 该双面组件辐射传输参数化方案对阳光电源SG系列光伏逆变器具有重要应用价值。PVRT方案将背面辐射吸收计算误差从30%降至8%以内,可显著提升MPPT算法对双面组件的追踪精度。建议将该模型集成至iSolarCloud平台,结合实际地形和组件高度参数,优化大型电站的发电量预测和智能运维策略。该技术还可为...

风电变流技术 储能系统 SiC器件 热仿真 ★ 5.0

基于物理信息生成式深度学习的风力机分层动态尾流建模

Hierarchical dynamic wake modeling of wind turbine based on physics-informed generative deep learning

Qiulei Wang · Zilong Ti · Shanghui Yang · Kun Yang 等6人 · Applied Energy · 2025年1月 · Vol.378

摘要 随着电力需求的不断增长,风电场的规模远超以往。功率与载荷预测是风电场布局优化中最关键的两个课题。传统的尾流建模方法,如解析模型和计算流体动力学(CFD)模拟,在准确性和效率方面均难以有效应对如此大规模的问题。本研究提出了一种新颖的基于生成式深度学习的风力机分层动态尾流建模方法——PHOENIX(PHysics-infOrmed gEnerative deep learniNg for hIerarchical dynamic wake modeling eXploration),用于捕捉风...

解读: 该深度学习风电尾流建模技术对阳光电源风电变流器及储能系统具有重要价值。通过精准预测风机功率输出的时空特性,可优化ST系列储能PCS的充放电策略,提升风储协同效率。该物理信息神经网络方法可借鉴应用于iSolarCloud平台的预测性维护算法,结合GFM控制技术实现风电场群级功率平滑输出。动态尾流模型的...