找到 2 条结果 · Applied Energy
基于多域协作与协变量交互的严重数据缺失下鲁棒光伏预测
Robust photovoltaic forecasting under severe data missingness via multi-domain collaboration and covariate interaction
Ke Yana · Jian Liua · Jiazhen Zhang · Fan Yangb 等6人 · Applied Energy · 2025年1月 · Vol.401
摘要 高质量的光伏发电(PV)功率预测对于高效的能源管理和可靠的电网集成至关重要,然而实际应用中的数据常常面临目标变量和辅助变量的大范围缺失问题。为应对这一挑战,本文提出MDCTL-MCI,一种具备缺失感知能力的预测框架,该框架联合利用信号分解、多尺度协变量交互以及多域协同迁移学习。首先,采用多元奇异谱分析(MSSA)对不完整时间序列进行去噪与重构,在无需显式填补的情况下增强潜在的时间结构特征。接着,引入轻量级的多尺度协变量交互(MCI)模块,建模重构后的光伏功率、全球水平辐照度、直接法向辐照度...
解读: 该多域协同光伏预测技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。针对实际电站数据缺失问题,MSSA信号重构与多尺度协变量交互建模可直接集成至SG系列逆变器的MPPT优化算法,提升发电功率预测精度10.5%-15.3%。多站点迁移学习策略可赋能PowerTitan储能系统的充放电调...
通过阴极水管理将直接硼氢化物燃料电池的功率密度提升至>600 mW cm−2
Boosting the power density of direct borohydride fuel cells to >600 mW cm−2 by cathode water management
Wenxing Jiang · Fangfang Wan · Qiqi Wan · Endao Zhang 等11人 · Applied Energy · 2025年1月 · Vol.378
摘要 直接硼氢化物燃料电池(DBFC)因其高能量密度而受到广泛关注。然而,其功率密度仍不足以满足商业应用的需求。目前已有大量研究聚焦于阳极反应动力学,但对阴极水管理的关注较少,而阴极水管理对于直接液体燃料电池除了至关重要。本文开发了一种具有异质结双微孔层(HJD-MPL)结构的新型气体扩散层(GDL)。利用该HJD-MPL结构,在80 °C下实现了688 mW cm−2的峰值功率密度,超过了文献报道值(453 mW cm−2)。由于具有更高的孔隙率、渗透性以及更强的梯度毛细力,氧气传输阻力从商用...
解读: 该燃料电池阴极水管理技术对阳光电源储能及充电桩产品具有重要借鉴价值。其异质结双微孔层结构通过梯度毛细力优化传质过程,将氧传递阻抗降低67%,功率密度提升52%。该思路可应用于ST系列PCS的液冷散热优化和充电桩热管理系统,通过仿生梯度孔隙结构改善冷却液流动特性,降低热阻抗,提升SiC功率器件散热效率...