找到 1 条结果 · Applied Energy

排序:
储能系统技术 SiC器件 ★ 5.0

基于物理信息注意力残差网络的电池智能温度预警模型

Battery intelligent temperature warning model with physically-informed attention residual networks

Xue Ke · Lei Wang · Jun Wang · Anyang Wang 等12人 · Applied Energy · 2025年1月 · Vol.388

摘要 电动汽车的快速发展对锂离子电池的热安全管理提出了更高要求。传统的物理模型需要大量离线参数辨识,在计算效率与模型保真度之间难以平衡;而数据驱动方法虽然精度较高,但缺乏可解释性,且在不同工况下需要大量数据支持。为应对上述挑战,本文提出了一种物理信息引导的注意力残差网络(Physics-Informed Attention Residual Network, PIARN),该模型将改进的非线性双电容模型与热集总模型嵌入到物理引导的循环神经网络框架中,从而提升了模型的可解释性与泛化能力。所设计的残...

解读: 该物理信息引导的电池温度预警技术对阳光电源储能系统具有重要价值。PIARN模型结合物理模型与深度学习,可集成至ST系列PCS和PowerTitan储能系统的BMS热管理模块,实现0.1°C精度的在线温度预测和近100%准确率的热预警。其轻量化物理模型与残差网络架构适合边缘计算部署,可通过iSolar...