找到 1 条结果 · Applied Energy

排序:
风电变流技术 ★ 5.0

基于外生变量与调优形式时间序列提示增强的大型时间序列模型的风电功率预测

Wind power prediction using foundation large time series models enhanced by time series prompt in exogenous and tuning forms

Yuwei Fan · Tao Song · Chenlong Feng · Chao Liu 等5人 · Applied Energy · 2025年1月 · Vol.400

摘要 大型时间序列模型(Large Time Series Models, LTSMs)在能源领域具有广泛的应用前景,其中时间序列分析在电力预测等多种实际下游任务中发挥着重要作用。然而,对外生变量的忽视以及全量微调方法的局限性,制约了这些模型在下游任务中的适应能力。本文提出时间序列提示(Time Series Prompt, TSP)的概念,构建了一种基于TSP的方案,将外生变量融入基础LTSM,并结合参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)方法...

解读: 该大型时序模型与时序提示技术对阳光电源风储系统具有重要价值。通过外生变量(风速预测)嵌入提示机制,可显著提升风电功率预测精度(MSE降低50%),结合参数高效微调进一步优化50%。该方法可直接应用于ST系列储能PCS的充放电策略优化,提升风储协同效率;集成至iSolarCloud平台实现智能预测性运...