找到 1 条结果 · Applied Energy
一种针对异质城乡区域的全面逐栋建筑屋顶光伏系统检测方法:以法国领土为例
A comprehensive building-wise rooftop photovoltaic system detection in heterogeneous urban and rural areas: application to French territories
Martin Thebault1 · Boris Nerot1 · Benjamin Govehovit · Christophe Menezo · Applied Energy · 2025年1月 · Vol.388
摘要 随着屋顶光伏(RPV)系统的快速扩张,准确识别这些装置的位置对于城市规划、电网管理以及社会经济分析变得至关重要。然而,现有的欧洲RPV系统数据集在空间覆盖范围和精度方面往往存在局限性,尤其是在建筑风格多样的地区。本研究提出了一种新颖的识别RPV系统的方法,该方法采用基于高分辨率航空影像和建筑物登记数据训练的卷积神经网络(CNN)。与传统的基于图像切片的方法不同,我们提出了一种逐栋建筑的处理方式,确保对每栋建筑进行独立评估。该模型在代表多种屋面材料和城市类型的五个法国省份进行了训练和验证。结...
解读: 该研究基于CNN深度学习的屋顶光伏系统识别技术,对阳光电源SG系列逆变器市场布局和iSolarCloud智慧运维平台具有重要价值。通过建筑级精准识别法国4000万建筑中的60万光伏系统,可为分布式光伏并网规划、储能系统(ST系列PCS/PowerTitan)配置优化提供数据支撑。该方法论可应用于电网...