找到 2 条结果 · 风电变流技术
风电机组齿轮箱载荷降低的风电场最优功率控制
Optimal Power Control in Wind Farms for Gearbox Load Reduction
Juan Wei · Yuxiang Li · Hanzhi Peng · Sheng Huang 等6人 · IEEE Transactions on Sustainable Energy · 2025年2月
时变工况下快速的功率与转矩波动会加剧风电机组齿轮箱的疲劳载荷并提高故障率。本文提出一种面向风电场的最优功率控制方法,在跟踪输电系统运营商功率调度指令的同时,优化功率分配以抑制齿轮箱内部振动位移波动,降低疲劳载荷。通过分析行星架、行星轮、太阳轮和直齿轮等关键部件的传动机制,构建了描述齿轮箱内部振动与机械转矩及输出功率关系的动态模型。基于模型预测控制框架建立最优控制问题,并构建基于齿轮箱实时振动状态的疲劳评估系统,用于表征机组运行品质并指导风电场发电调度,为风电场优化调度提供安全边界,有效抑制潜在故...
解读: 该风电场最优功率控制技术对阳光电源储能和光伏产品线具有重要借鉴价值。其基于模型预测控制的功率分配优化思路可应用于ST系列储能变流器的多机组协调控制,有助于降低储能系统的机械应力和疲劳载荷。文中的振动状态实时监测和疲劳评估方法也可集成到iSolarCloud平台,用于SG系列逆变器的预测性维护。特别是...
一种模块化的多步预测方法用于海上风电场群
A modular multi-step forecasting method for offshore wind power clusters
Lei Fang · Bin He · Sheng Yu · Applied Energy · 2025年1月 · Vol.380
摘要 随着规模经济的推动,海上风电场群正逐渐成为一种普遍趋势。然而,由于风资源的不确定性,海上风电出力具有间歇性和波动性,给预测工作带来了显著挑战。目前针对海上风电场群功率预测的研究仍较为有限。本文针对这一研究空白,提出了一种面向海上风电场群的模块化、解耦式的多步预测方法。该方法采用模块化设计,能够适应多种预测场景,特别是有无数值天气预报(NWP)数据的情况,为未来的研究与应用提供了灵活的框架。该方法首先利用信号处理技术(包括快速傅里叶变换FFT和奇异值分解SVD)对集群内各风电场的历史功率输出...
解读: 该海上风电集群多步预测方法对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。通过时空特征提取和多模态数据融合,可显著提升风储协同控制精度,优化iSolarCloud平台的预测性维护能力。模块化架构适配有无NWP数据场景,可集成至GFM/GFL控制策略中,提升电网友好型并网性...