← 返回
风电变流技术
★ 5.0
一种模块化的多步预测方法用于海上风电场群
A modular multi-step forecasting method for offshore wind power clusters
| 作者 | Lei Fang · Bin He · Sheng Yu |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 380 卷 |
| 技术分类 | 风电变流技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | The multi-step forecasting method combining enhanced LSTM and LightGBM is proposed. |
语言:
中文摘要
摘要 随着规模经济的推动,海上风电场群正逐渐成为一种普遍趋势。然而,由于风资源的不确定性,海上风电出力具有间歇性和波动性,给预测工作带来了显著挑战。目前针对海上风电场群功率预测的研究仍较为有限。本文针对这一研究空白,提出了一种面向海上风电场群的模块化、解耦式的多步预测方法。该方法采用模块化设计,能够适应多种预测场景,特别是有无数值天气预报(NWP)数据的情况,为未来的研究与应用提供了灵活的框架。该方法首先利用信号处理技术(包括快速傅里叶变换FFT和奇异值分解SVD)对集群内各风电场的历史功率输出序列进行预处理,实现数据的分解与去噪,从而充分挖掘其时空信息。随后,通过一种增强型长短期记忆网络(Enhanced LSTM),结合二维卷积层与LSTM层,实现时空特征的提取。在此基础上,引入NWP数据,并采用轻量梯度提升机(LightGBM)模型完成最终的预测任务。最后,所提方法在中国东部沿海某风电场群上进行了验证,结果表明该方法在单个风电场和整个集群层面均具有良好的有效性、预测精度和泛化能力。
English Abstract
Abstract Offshore wind farm clusters, driven by economies of scale, are emerging as a prevalent trend. However, the intermittency and volatility of offshore wind power due to wind resource uncertainties pose significant challenges for forecasting. Existing research on offshore wind farm cluster power forecasting remains limited. This paper addresses this gap by proposing a modular and decoupled multi-step forecasting method for offshore wind farm clusters. The modular design enables adaptability to various forecasting scenarios, particularly with and without Numerical Weather Prediction (NWP) data, providing a flexible framework for future research and applications. The method leverages the spatiotemporal information of all wind farms within the cluster by first preprocessing the historical power output series using signal processing techniques , including Fast Fourier Transform (FFT) and Singular Value Decomposition (SVD), to decompose and denoise the data. Spatiotemporal feature extraction is then achieved through an Enhanced Long Short-Term Memory (LSTM) network, combining two-dimensional convolution and LSTM layers. Subsequently, incorporating NWP data, a Light Gradient Boosting Machine (LightGBM) model is employed for final forecasting. Finally, the proposed method is validated on a wind farm cluster in the eastern coastal region of China, demonstrating its effectiveness, accuracy, and generalizability at both individual wind farm and cluster levels.
S
SunView 深度解读
该海上风电集群多步预测方法对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。通过时空特征提取和多模态数据融合,可显著提升风储协同控制精度,优化iSolarCloud平台的预测性维护能力。模块化架构适配有无NWP数据场景,可集成至GFM/GFL控制策略中,提升电网友好型并网性能。FFT-SVD信号预处理与LSTM-LightGBM组合为储能系统功率预测和能量管理提供新思路,助力海上风电场群储能配置优化与削峰填谷策略改进。