找到 3 条结果 · 电动汽车驱动
基于事件驱动的强化学习预测控制器设计——用于三相NPC变流器的在线逼近器方法
Event-Driven Based Reinforcement Learning Predictive Controller Design for Three-Phase NPC Converters Using Online Approximators
Xing Liu · Lin Qiu · Youtong Fang · Kui Wang 等6人 · IEEE Transactions on Power Electronics · 2024年12月
本文针对电力变换器系统,研究了一种利用在线逼近器的无模型强化学习预测控制问题的两步事件驱动方法,解决了系统不确定性和不必要的开关损耗等问题。具体而言,本技术报告的关键特点如下:1) 采用一个评判神经网络实时学习性能函数;2) 采用一个执行神经网络在线逼近预测控制器,并使从评判网络获得的学习性能函数最小化;3) 采用两步事件驱动控制协议降低开关频率(SF)。此外,我们进一步探讨了该方案对参数不确定性的敏感性,并量化了其在低开关频率运行和未知干扰条件下的性能。此外,还对网络权重估计误差进行了收敛性分...
解读: 从阳光电源的业务视角来看,这项基于事件驱动的强化学习预测控制技术对三相NPC变流器的应用具有重要战略价值。NPC(中点钳位)拓扑是我司大功率光伏逆变器和储能变流器的核心架构,该技术在提升系统性能和降低运维成本方面展现出显著潜力。 该论文提出的双步事件驱动控制策略直接针对变流器的两大痛点:一是通过在...
一种基于神经网络虚拟阻抗的双向电网逆变器控制新方法以改善微电网动态性能
A Novel Bi-Directional Grid Inverter Control Based on Virtual Impedance Using Neural Network for Dynamics Improvement in Microgrids
Mohamad Alzayed · Michel Lemaire · Hicham Chaoui · Daniel Massicotte · IEEE Transactions on Power Systems · 2024年5月
在微电网中,电压源逆变器通常采用下垂控制技术,并结合电压和内部电流控制回路,以实现可靠的电力供应。由于线路阻抗不匹配,标准下垂控制技术难以实现功率的均匀分配,并限制并联连接之间的环流,尤其是在高度非线性系统中。本研究旨在引入一种基于神经网络的虚拟阻抗,并将其与双向电网逆变器控制技术相结合,以提高微电网动态运行期间的稳定性。为了在各种运行场景下以较小的偏差和更好的稳定性准确跟踪需求和参考功率,所提出的技术采用前馈神经网络(FFNN)来学习逆变器暂态过程中的非线性模型。该技术无需额外的调节步骤,仅需...
解读: 该神经网络自适应虚拟阻抗控制技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。当前阳光电源储能系统采用下垂控制实现多机并联功率分配,但线路阻抗不匹配和负载突变会影响动态响应。该研究提出的神经网络在线调节虚拟阻抗方案,可直接应用于ST储能变流器的控制算法优化,提升多台...
基于机器学习的多浮置埋层LDMOS器件击穿电压建模与优化
Machine Learning-Based Modeling and BV Optimization for LDMOS With Multifloating Buried Layers
Zhen Cao · Qi Sun · Qiaowei Peng · Biao Hou 等6人 · IEEE Transactions on Electron Devices · 2024年12月
本文介绍了一种利用机器学习(ML)优化具有多浮动埋层(MFBL)的横向双扩散金属氧化物半导体场效应晶体管(LDMOS)器件击穿电压(BV)的新方法。本研究摒弃了传统复杂的物理推导方法,将神经网络与遗传算法相结合,构建了一个自适应优化框架。首先,我们分析了MFBL LDMOS的物理特性,以确定影响BV性能的关键参数,并确定其合理取值范围。然后,通过TCAD仿真生成数据集,并应用卷积神经网络(CNN)建立MFBL LDMOS的BV预测模型。在后续阶段,采用遗传算法对结构参数进行自适应优化,从而推导出...
解读: 从阳光电源的业务视角来看,该论文提出的基于机器学习优化多浮埋层LDMOS器件击穿电压的方法具有重要的战略价值。LDMOS作为功率半导体的核心器件,广泛应用于我司光伏逆变器和储能变流器的功率转换模块中,其击穿电压性能直接影响系统的功率密度、转换效率和可靠性。 该技术的核心价值在于突破了传统物理推导方...