找到 2 条结果 · 智能化与AI应用
基于个性化联邦强化学习的多微电网协同优化调度低碳经济方法
Cooperative optimal dispatch of multi-microgrids for low carbon economy based on personalized federated reinforcement learning
Ting Yang · Zheming Xu · Shijie Ji · Guoliang Liu 等6人 · Applied Energy · 2025年1月 · Vol.378
摘要 互联多微电网(MMG)系统的协同优化调度为大规模可再生能源资源的高效利用提供了广阔前景和重要机遇。此类系统有助于实现能源资源的最优配置,并提升运行成本的经济性。然而,在协同优化调度过程中,异构微电网(MG)实体之间利益诉求的差异导致数据共享受阻,并引发隐私泄露问题。此外,多能耦合关系与高维决策过程进一步加剧了该问题的复杂性,可能导致优化过程难以收敛以及能源管理精度下降。同时,新建微电网缺乏运行数据与调度经验,制约了其调度任务的快速“冷启动”能力。为弥补上述研究空白,本文提出一种基于聚类的个...
解读: 该联邦强化学习多微网协同调度技术对阳光电源ST储能系统和iSolarCloud平台具有重要应用价值。可应用于PowerTitan储能集群的分布式优化调度,在保护各微网数据隐私前提下实现碳-电联合交易优化,降低综合成本5.78%、碳排放8.43%。其冷启动迁移策略可加速新建微网接入速度提升42.83%...
PE-GPT:电力电子设计的新范式
PE-GPT: A New Paradigm for Power Electronics Design
Fanfan Lin · Xinze Li · Weihao Lei · Juan J. Rodriguez-Andina 等6人 · IEEE Transactions on Industrial Electronics · 2024年10月
大型语言模型(LLM)在推动众多行业发展方面展现出了令人振奋的潜力,但由于缺乏专业的电力电子(PE)技术知识以及处理特定电力电子数据时面临的挑战,其在电力电子领域的应用受到了阻碍。本研究提出了一种开创性的方法,用于构建专门针对电力电子设计应用的多模态大型语言模型,名为 PE - GPT。该方法包括利用从电力电子知识库中进行检索增强生成来强化 PE - GPT,并提出了一个混合框架,将大型语言模型代理与元启发式算法、模型库和仿真库相结合。这增强了其多模态处理能力,并使其能够融入现有的设计工作流程。...
解读: 从阳光电源的业务视角来看,PE-GPT代表了电力电子设计范式的重要突破,对公司光伏逆变器、储能变流器等核心产品的研发具有战略意义。该技术通过多模态大语言模型与元启发式算法、仿真库的深度融合,能够显著提升电力电子设计的效率和准确性,在双有源桥(DAB)变换器调制策略和Buck变换器参数设计中已展现出比...