找到 1 条结果 · 光伏发电技术
时空特征编码的深度学习方法用于屋顶光伏潜力评估
Spatiotemporal feature encoded deep learning method for rooftop PV potential assessment
Jian Xuab · Zhiling Guo · Qing Yuc · Kechuan Dongd 等7人 · Applied Energy · 2025年1月 · Vol.394
摘要 屋顶光伏(PV)系统是提升城市环境中可再生能源利用的一种有前景的解决方案。准确估算屋顶光伏系统的发电潜力受到复杂城市形态所引起的遮蔽效应的制约,这些效应显著降低了屋顶表面的太阳辐照度,从而导致预测误差。传统的遮蔽模拟方法计算成本高昂,凸显了在计算效率与评估精度之间实现精细平衡的必要性。本研究提出了一种创新的深度学习框架,能够有效编码多种时空数据源,以精确预测阴影投射并计算屋顶光伏潜力。具体而言,基于物理原理的真实数据,结合U-Net网络、三维(3D)建筑细节、太阳能资源数据以及气象参数,使...
解读: 该时空特征编码深度学习框架对阳光电源屋顶光伏系统规划具有重要价值。研究通过U-Net网络精准预测建筑阴影对发电量的影响(平均损失5.32%),可优化SG系列逆变器的MPPT算法在遮挡工况下的功率追踪策略。158倍的计算加速能力可集成至iSolarCloud平台,实现大规模城市屋顶光伏资源快速评估与选...