找到 1 条结果 · 储能系统技术
一种结合局部-全局特征提取的混合深度学习框架用于智能电力系统稳定性评估
A Hybrid Deep Learning Framework With Local-Global Feature Extraction for Intelligent Power System Stability Assessment
Wei Yao · Runfeng Zhang · Yurun Zhang · Shanyang Wei 等6人 · IEEE Transactions on Power Systems · 2025年5月
暂态仿真对保障电力系统安全稳定运行至关重要。大扰动后,系统可能出现暂态功角失稳和短期电压失稳,二者电气特性相似但需不同控制策略,因此准确识别主导失稳模式(DIM)尤为关键。本文提出一种新型混合深度学习框架,通过充分提取电力数据中的局部-全局特征实现高精度DIM识别。该框架采用经随机采样与聚合优化的图神经网络以增强局部特征捕捉与模型泛化能力,并引入基于自注意力机制的Transformer网络挖掘关键全局特征。同时嵌入重要离散故障特征以提升性能。所提方法有效融合多层级特征,克服了现有模型局限于单一失...
解读: 该混合深度学习框架对阳光电源储能系统和电网侧产品具有重要应用价值。在PowerTitan大型储能系统中,可实时识别电网暂态功角失稳与短期电压失稳的主导模式,为ST系列储能变流器提供差异化控制策略:功角失稳时优先调节有功功率支撑,电压失稳时侧重无功补偿。该框架的图神经网络与Transformer架构可...