← 返回
基于改进长短期记忆网络与数据驱动预测控制的电动汽车能量管理
Energy management of electric vehicles based on improved long short term memory network and data-enabled predictive control
| 作者 | Bin Chen · Guo He · Lin Hu · Heng Li · Miaoben Wang · Rui Zhang · Kai Gao |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 384 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A hierarchical data-driven predictive control for energy management is proposed. |
语言:
中文摘要
摘要 作为混合储能系统(HESS)电动汽车中一种流行的能量管理策略(EMS),模型预测控制(MPC)易受现有参数建模方法在模型精度和参数敏感性方面的影响。本文提出了一种基于分层数据驱动预测控制的新型EMS。上层采用优化的长短期记忆(LSTM)网络进行轨迹预测,从而为下层获取具有成本效益的负载功率需求。在下层,针对HESS提出了一种数据驱动预测控制(DeePC)方法,以实现电池与超级电容器之间的最优功率分配,并最小化电池容量衰减。与传统的MPC不同,DeePC基于仅从HESS的输入-输出数据构建的非参数模型,能够灵活应对不同任务和环境中存在的多种非线性和不确定性。与非线性模型预测控制相比,DeePC将总运行成本降低了22.68%,其优化结果更接近离线动态规划的结果。此外,所提出的DeePC方法通过硬件在环(HIL)实验验证了其有效性。
English Abstract
Abstract As a popular energy management strategy (EMS) in electric vehicles with hybrid energy storage systems (HESS), model predictive control (MPC) is vulnerable to model accuracy and parameter sensitivity effects with existing parametric modeling methods. This paper proposes a novel EMS based on hierarchical data-driven predictive control. The upper layer utilizes an optimized long short-term memory (LSTM) network for trajectory prediction, enabling the acquisition of cost-effective load power demands for the lower layer. In the lower layer, a data-enabled predictive control (DeePC) is proposed for the HESS to achieve optimal power distribution between the battery and supercapacitor while minimizing battery capacity loss. Unlike conventional MPC, DeePC is based on a non-parametric model built solely from input–output data of the HESS, enabling agile handling of diverse nonlinearities and uncertainties across different tasks and environments. Comparison with nonlinear model predictive control shows that DeePC reduces the total operating cost by 22.68%, with optimization results closer to offline dynamic programming results. Furthermore, the effectiveness of the proposed DeePC method is validated through hardware-in-the-loop (HIL).
S
SunView 深度解读
该分层数据驱动预测控制技术对阳光电源储能系统具有重要应用价值。论文提出的DeePC方法无需精确参数建模,仅依赖输入输出数据即可实现电池-超级电容混合储能的最优功率分配,相比传统MPC降低运行成本22.68%。该技术可直接应用于ST系列PCS的能量管理策略优化,通过LSTM网络预测负荷需求,结合DeePC算法延长电池寿命、提升PowerTitan储能系统经济性。同时,该方法对充电站储能配置和iSolarCloud平台的预测性维护功能具有借鉴意义,可增强系统对非线性工况的自适应能力。