← 返回
储能系统技术 储能系统 ★ 5.0

基于概率电压灵敏度分析与霍尔定理的主动配电网中移动式储能系统路由与调度

Routing and scheduling of mobile energy storage systems in active distribution network based on probabilistic voltage sensitivity analysis and Hall's theorem

作者 Ting Wu · Heng Zhuang · Qisheng Huang · Shiwei Xi · Yue Zhou · Wei Gan · Jelena StojkovićTerzić
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 386 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A novel PVSA-based method was proposed to pre-generate the MESS destinations.
语言:

中文摘要

摘要 移动式储能系统(MESSs)具有显著的时间和空间灵活性,使其成为主动配电网(ADNs)中提供辅助服务的理想选择。然而,传统的MESS调度方法严重依赖精确的负荷与交通预测,而基于深度学习的方法则可能计算成本高昂且对动态系统工况的适应性不足。为应对这些挑战,本文提出一种两阶段调度框架,融合灵敏度分析、图论与动态优化技术,从而提升调度的适应性与计算效率。在第一阶段,目的地预生成模型利用概率电压灵敏度来应对负荷预测的不确定性,并识别出最有可能需要辅助支持的关键ADN节点。在第二阶段,基于霍尔定理的创新性目的地筛选算法进一步精炼候选节点,并结合动态滚动优化方案,实时持续更新MESS的行驶路线及充放电策略。数值仿真结果表明,与现有方法相比,所提出的两阶段框架将调度准确率提高了5.56%,任务完成率提升了35.27%,并使辅助服务的平均每小时持续时间延长约20分钟。这些结果凸显了该框架的有效性与强适应性,为主动配电网的可靠运行提供了有力的技术支撑。

English Abstract

Abstract Mobile energy storage systems (MESSs) possess significant temporal and spatial flexibility, making them ideal for ancillary services in active distribution networks (ADNs). However, conventional MESS scheduling methods rely heavily on accurate load and traffic forecasts, while deep learning-based approaches can be computationally expensive and insufficiently adaptive to dynamic system conditions. To address these challenges, we propose a two-stage scheduling framework that integrates sensitivity analysis, graph theory, and dynamic optimization techniques, thereby enhancing adaptability and computational efficiency. In the first stage, a destination pre-generation model leverages probabilistic voltage sensitivity to accommodate load forecast uncertainties and pinpoint critical ADN nodes that are most likely to require ancillary support. In the second stage, an innovative destination screening algorithm based on Hall's theorem refines the candidate nodes, coupled with a dynamic rolling optimization scheme that continuously updates MESS routes and charging/discharging strategies in real-time. Numerical simulations demonstrate that, compared to existing methods, our proposed two-stage framework improves scheduling accuracy by 5.56 %, boosts the mission finish rate by 35.27 %, and extends the average hourly duration of ancillary services by roughly 20 min. These results underscore the framework's effectiveness and adaptability, offering a robust solution for reliable ADN operations.
S

SunView 深度解读

该移动储能调度框架对阳光电源ST系列PCS及PowerTitan移动储能方案具有重要应用价值。基于概率电压灵敏度的两阶段优化算法可集成至iSolarCloud平台,实现移动储能车辆动态路径规划与充放电策略实时优化。Hall定理筛选机制可提升配电网关键节点识别精度,配合GFM控制技术增强电网支撑能力。该方法提升35%任务完成率和20分钟服务时长的效果,为阳光电源移动储能产品在主动配电网辅助服务场景提供智能调度算法支撑,显著提升系统经济性与可靠性。