← 返回
电动汽车驱动 ★ 4.0

燃料电池-电池电动汽车的热管理:挑战与解决方案

Thermal management of fuel cell-battery electric vehicles: Challenges and solutions

作者 Aezid-Ul-Hassan Najmi · Abdul Wah · Rohith Prakash · Oliver Schopen · Thomas Esch · Bahman Shabani
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 387 卷
技术分类 电动汽车驱动
相关度评分 ★★★★ 4.0 / 5.0
关键词 Comprehensive review shows only 10 % focus on FCHEV thermal challenges.
语言:

中文摘要

摘要 燃料电池混合动力电动汽车(FCHEVs)有望满足道路交通中高功率需求,同时减少温室气体排放。然而,尽管前景广阔,FCHEVs在进入当前汽车市场的过程中仍面临诸多挑战,其中热管理是主要挑战之一。除了显著降低FCHEVs的效率外,辅助负载以及加热和冷却需求还可能由于加热/冷却效率低下而导致电动部件寿命缩短,进而影响工作温度。本综述指出,现有研究主要集中于各个子系统,对FCHEVs整体热管理集成的关注较为有限。诸如废热回收(WHR)等新型策略被证明可将质子交换膜燃料电池(PEMFC)的效率从40%至60%提升至90%,热效率提高约11%,并在寒冷条件下延长行驶里程。通过分析各子系统之间的相互依赖关系,并提出诸如相变材料和热电联产系统等创新性解决方案,本文为推进FCHEVs热管理技术发展及优化混合动力系统的性能提供了全面的框架。

English Abstract

Abstract Fuel cell hybrid electric vehicles (FCHEVs) are potential solutions for fulfilling high-power demands in road transportation while reducing greenhouse gas emissions. However, despite being very promising, FCHEVs confront many challenges in their quest to penetrate the present automotive market, with thermal management being one of the major challenges. In addition to significantly reducing FCHEV efficiency, auxiliary loads, heating, and cooling demands can also shorten the lifespan of electric components due to inefficient heating/cooling, which impacts the operating temperature. This review highlights that existing research predominantly addresses individual subsystems, with a limited focus on thermal management integration for FCHEVs. Novel strategies such as waste heat recovery (WHR) are shown to enhance PEMFC efficiency from 40 to 60 % to 90 %, improve thermal efficiency by ∼11 %, and extend the driving range in frigid conditions. By addressing subsystem interdependencies and proposing innovative solutions like phase change materials and combined heat and power systems, this work offers a comprehensive framework for advancing FCHEVs thermal management and optimizing hybrid powertrain performance.
S

SunView 深度解读

该燃料电池混合动力热管理技术对阳光电源EV解决方案具有重要参考价值。文中提出的废热回收(WHR)系统可将效率提升至90%,可借鉴应用于我司OBC充电机和电机驱动系统的热管理优化。相变材料(PCM)技术可集成到充电桩温控设计中,提升极端温度下的充电效率。结合iSolarCloud平台的预测性维护能力,可实时监测电池-电机系统热状态,延长部件寿命。建议将多子系统协同热管理理念应用于PowerTitan储能系统,通过SiC功率器件低损耗特性与智能冷却策略结合,降低辅助能耗,提升系统综合效率。