← 返回
基于深度嵌入聚类的锂离子电池储能系统不一致性识别
Inconsistency identification for Lithium-ion battery energy storage systems using deep embedded clustering
| 作者 | Zhen Chen · Weijie Liu · Di Zhou · Tangbin Xi · Ershun Pan |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 388 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Online multi-level inconsistency identification for [battery energy storage systems](https://www.sciencedirect.com/topics/engineering/battery-energy-storage "Learn more about battery energy storage systems from ScienceDirect's AI-generated Topic Pages"). |
语言:
中文摘要
摘要 不一致性是导致锂离子电池组性能下降的关键因素。准确识别不一致电池对电池储能系统(ESS)的健康管理具有重要意义。现有大多数方法依赖先验知识,且难以获得电池动态特性的最优表征,因而不再适用于不一致性水平随时间变化的在线场景。本文提出一种基于深度嵌入聚类的电池储能系统在线无监督多层级不一致性识别方法。首先,通过一种改进的自编码器从充放电电压曲线中提取具有判别性的潜在表征,该自编码器同时考虑信息保留能力和重构误差。其次,构建基于改进自编码器与K均值算法的深度嵌入聚类模型,并设计一种贪心算法交替优化电池组的潜在表征与聚类结构,无需依赖先验知识。第三,构建基于距离的多层级不一致性识别框架,用于储能系统的在线一致性管理。最后,采用某实际储能电站五个月的真实数据验证所提方法的有效性。对于研究中的四个电池组,所提方法的平均聚类惯性指标分别为0.9358、1.1931、2.1389和1.0086,平均戴维斯-布尔丁指标分别为0.7388、0.7853、0.6396和0.6554,表明其具有更高的聚类质量,优于其他对比方法。此外,与电池管理系统相比,所提方法能够在四个电池组中额外识别出严重不一致的电池组。进一步地,该方法还成功应用于一个公开数据集。所有结果证明,所提方法能够鲁棒且准确地识别不一致电池。
English Abstract
Abstract Inconsistency is an essential cause of weakening the performance of lithium-ion battery packs. Accurate identification of inconsistent batteries is of great significance to the health management of battery energy storage systems (ESSs). Most existing methods require prior knowledge and fail to get optimal representations of dynamic characteristics of batteries, which are no longer suitable for online scenarios with time-varying inconsistency levels. This paper proposes an online unsupervised multi-level inconsistency identification method for battery ESSs based on deep embedded clustering. Firstly, discriminative latent representations are extracted from charge-discharge voltage curves by an improved autoencoder considering both information preservation and reconstruction errors. Secondly, a deep embedded clustering model based on the improved autoencoder and K-means algorithm is built, and then a greedy algorithm is designed to alternately optimize both the latent representations and cluster structures of battery packs without relying on prior knowledge. Thirdly, a distance-based multilevel inconsistency identification framework is constructed for the online consistency management of ESSs. Finally, five months of real-world ESS station data are used to validate the proposed method. The mean clustering inertia indices of our proposed method are respectively 0.9358, 1.1931, 2.1389, and 1.0086 for the four studied battery groups, and the mean Davies-Bouldin indices are respectively 0.7388, 0.7853 0.6396, and 0.6554 for these battery groups, demonstrating higher clustering quality and outperforming other comparative methods. Additionally, compared to the battery management system , the proposed method can identify additional severely inconsistent battery packs within the four battery groups. Furthermore, it has also been successfully applied to a public dataset. All these results prove that the inconsistent batteries can be identified robustly and accurately.
S
SunView 深度解读
该深度嵌入聚类技术对阳光电源ST系列储能变流器及PowerTitan系统的电池健康管理具有重要价值。通过无监督学习实现多层级不一致性识别,可集成至iSolarCloud平台实现在线预测性维护,提升BMS诊断能力。该方法无需先验知识、适应时变特性的优势,可优化ESS全生命周期管理策略,降低电池簇退化风险,延长储能系统运行寿命,为阳光电源储能解决方案提供智能化运维技术支撑。