← 返回
基于广义加性模型的小时级电力负荷中期高效预测
Efficient mid-term forecasting of hourly electricity load using generalized additive models
| 作者 | Monika Zimmerman · Florian Ziel |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 388 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Fast interpretable GAM-based mid-term (1 year ahead) hourly load forecasting model. |
语言:
中文摘要
摘要 准确的中期(数周至一年)小时级电力负荷预测对于发电厂运行中的战略决策至关重要,有助于保障供电安全与电网稳定、规划和建设储能系统以及开展电力交易。尽管已有大量模型能够有效预测短期(数小时至数天)的小时负荷,但针对中期负荷预测的解决方案仍然较为稀缺。在中期负荷预测中,捕捉负荷多方面的特征存在显著的建模挑战,这些特征包括日、周和年的季节性模式、自回归效应、天气及节假日影响,以及社会经济非平稳性。为应对这些挑战,本文提出一种新颖的预测方法,该方法采用由可解释的P样条构成的广义加性模型(GAM),并结合自回归后处理技术进行增强。该模型将平滑化温度、通过误差-趋势-季节性(ETS)模型拟合并以持续性方法预测的非平稳社会经济状态、对假期时段、固定日期节假日和工作日节假日影响的精细刻画,以及季节性信息作为输入变量。所提出的模型利用2015年至2024年期间涵盖24个欧洲国家的负荷数据进行了评估。分析结果表明,该模型不仅相比当前先进方法显著提升了预测精度,而且由于其完全可解释的结构,能够提供关于各个组成部分对负荷预测影响的宝贵洞察。该模型在计算性能方面表现优异,仅需几秒钟即可完成多年小时级数据的预测,其预测效果可媲美日前输电系统运营商(TSO)的预测水平,凸显了其在电力系统行业实际应用中的巨大潜力。
English Abstract
Abstract Accurate mid-term (weeks to one year) hourly electricity load forecasts are essential for strategic decision-making in power plant operation, ensuring supply security and grid stability, planning and building energy storage systems, and energy trading. While numerous models effectively predict short-term (hours to a few days) hourly load, mid-term forecasting solutions remain scarce. In mid-term load forecasting, capturing the multifaceted characteristics of load, including daily, weekly and annual seasonal patterns, as well as autoregressive effects, weather and holiday impacts, and socio-economic non-stationarities, presents significant modeling challenges. To address these challenges, we propose a novel forecasting method using Generalized Additive Models (GAMs) built from interpretable P-splines that is enhanced with autoregressive post-processing. This model incorporates smoothed temperatures, Error-Trend-Seasonal (ETS) modeled and persistently forecasted non-stationary socio-economic states, a nuanced representation of effects from vacation periods, fixed date and weekday holidays, and seasonal information as inputs. The proposed model is evaluated using load data from 24 European countries over more than 9 years (2015-2024). This analysis demonstrates that the model not only has significantly enhanced forecasting accuracy compared to state-of-the-art methods but also offers valuable insights into the influence of individual components on predicted load, given its full interpretability. Achieving performance akin to day-ahead Transmission System Operator (TSO) forecasts, with computation times of just a few seconds for several years of hourly data, underscores the potential of the model for practical application in the power system industry.
S
SunView 深度解读
该中期负荷预测技术对阳光电源储能系统具有重要应用价值。GAM模型可优化PowerTitan及ST系列PCS的能量管理策略,通过精准预测周至年度负荷曲线,实现储能系统充放电计划优化和容量配置决策。其可解释性强的特点可集成至iSolarCloud平台,结合气象、节假日等多维数据,提升储能电站经济调度能力。秒级计算速度适配实时调度需求,为电网侧储能项目的投资规划和能源交易策略提供数据支撑,增强供电安全性与电网稳定性。