← 返回
光伏发电技术 储能系统 户用光伏 ★ 5.0

预测下一代光伏技术在住宅建筑中的能源、经济和环境性能

Predicting the energy, economic, and environmental performance of next-generation photovoltaic technologies in residential buildings

作者 Ju Won Lima · Hyeonsoo Kimb
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 390 卷
技术分类 光伏发电技术
技术标签 储能系统 户用光伏
相关度评分 ★★★★★ 5.0 / 5.0
关键词 The PCE of perovskite is expected to surpass that of silicon-cell before 2030.
语言:

中文摘要

摘要 尽管硅基太阳能电池长期以来一直主导着太阳能产业,但新兴的光伏技术正通过在效率、成本效益和可持续性方面的改进挑战其主导地位。本研究比较了三种新兴太阳能电池材料——钙钛矿、硫族化合物和有机材料——与传统硅基光伏技术的性能。我们评估了四种不同类型的屋顶太阳能板安装在美国密歇根州底特律市一栋典型独户住宅上的能源、经济和环境表现,以确定到2050年哪种光伏技术最有利于支持近零能耗建筑(NZEBs)的实施。本研究采用五参数逻辑函数(5PL)对光伏技术进行评估,分析光伏装置效率及总投资成本随时间的变化趋势。结果表明,由于钙钛矿材料卓越的光吸收能力和低成本制造工艺,其在能源(2050年钙钛矿的能源削减率为30.66%,硅基光伏为25.51%)和经济层面(2050年钙钛矿每年可节省443.71美元,硅基光伏每年可节省369.26美元)均具备超越硅基光伏的潜力。然而,钙钛矿太阳能电池较高的隐含二氧化碳排放量(1020 gCO₂/kWh)导致其在本研究涵盖的四种太阳能电池材料中具有最长的环境投资回收期(即2050年为6.81年)。与此同时,硫族化合物光伏技术在环境性能方面表现最佳。综上所述,本文的意义在于帮助建筑工程师和光伏技术人员预测哪些太阳能电池材料具备市场潜力,能够取代硅基光伏的主导地位,成为太阳能产业未来的“主流系统”。

English Abstract

Abstract While silicon-cell photovoltaics have long dominated the solar power industry, emerging PV technologies now challenge their dominance through improvements in efficiency, cost-effectiveness, and sustainability . In this study, we compare three emerging solar cell materials—perovskite, chalcogenide , and organic—with conventional silicon-cell PV. We evaluate four different rooftop solar panels installed on a typical single-family residential building in Detroit, MI, examining their energy, economic, and environmental performance to determine which PV technology is best positioned to support the implementation of NZEBs by 2050. A five-parameter logistic (5PL) function was used to evaluate solar technologies by investigating the efficiency of PV devices and total investment costs over time. The results indicate that perovskite has the potential to outperform silicon-cell PV in terms of energy (energy reduction rate of 30.66 % for perovskite and 25.51 % for silicon-cell PV in 2050) and economic perspectives (cost savings of $443.71 USD/year for perovskite and $369.26 USD/year for silicon-cell PV in 2050), owing to its remarkable light absorption capabilities and low-cost manufacturing process. However, the high embedded CO 2 emissions of perovskite solar cells (1020 gCO 2 /kWh) have resulted in this technology exhibiting the longest environmental payback period (i.e., 6.81 years in 2050) among the four solar cell materials covered in this study. Meanwhile, the performance of chalcogenide PV was found to be the best from an environmental standpoint. In conclusion, the significance of this paper lies in helping building engineers and PV technicians predict which solar cell materials have the market potential to replace the dominance of silicon-cell PV and become the “system of the future” in the solar power industry.
S

SunView 深度解读

该研究对阳光电源户用光伏系统具有重要战略意义。钙钛矿等新型光伏技术的高效率特性(2050年能源削减率达30.66%)为SG系列户用逆流器提供了更高功率密度的应用场景,需优化MPPT算法以适配新材料的IV特性曲线。研究揭示的经济性优势(年节省443美元)验证了阳光电源储能一体化方案的市场潜力,可结合ST系列储能变流器开发针对新型光伏组件的混合系统。环境回收期分析为iSolarCloud平台增加全生命周期碳足迹追踪功能提供了数据支撑,助力NZEB目标实现。