← 返回
储能系统技术 储能系统 ★ 5.0

大规模脱碳电网与储能系统中的电解水制氢:碳强度与碳排放完整性的评估

Electrolytic hydrogen in a large-scale decarbonized grid with energy reservoirs: An assessment of carbon intensity and integrity

作者 Carlos Eduardo Driemeier · Giovana C.Tonon · Mateus Ferreira Chagas · Gabriel P.Petrielli · Daniele S.Henzler · Luísa C.M.Gomes · Bruno E.Limeir · Thayse A.D.Hernandes · E. R. Morais
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 391 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Case study of low-carbon e-H2 production connected to a highly decarbonized grid.
语言:

中文摘要

摘要 电解水制氢(e-H₂)正受到全球广泛关注,被视为实现深度脱碳的关键载体。巴西的e-H₂生产具有独特性,因其电力系统具备大陆级规模、高度脱碳(2023年可再生能源占比达93%),并拥有大规模能源储存能力(210 TWh)以及水电水库提供的约50 GW调度灵活性。在此特殊背景下,本研究评估了并网型e-H₂生产的碳强度(通过从摇篮到大门的生命周期评估进行量化)以及保障其碳排放完整性的必要条件。研究收集了太阳能、风能系统及碱性电解槽的生命周期清单数据,提出了太阳能和风能发电碳排放因子的地理空间建模方法,并开展了并网e-H₂生产的逐小时模拟。计算结果显示,利用太阳能制氢的碳强度为2.9–4.0 kgCO₂ eq kgH₂⁻¹,而风能制氢可低至1.0 kgCO₂ eq kgH₂⁻¹。即使考虑长达2000公里输电的影响,来自最优风场的能源供应仍可实现最低碳强度。模拟表明,在利用水电水库储能辅助的情况下,以高容量因数(≈90%)运行风能驱动的电解制氢是可行的,且不会对电网排放水平和水库功能造成负面影响。该结果表明,在可再生能源富集的电网中,要求新增可再生能源发电与电解制氢用电实现逐小时匹配的做法缺乏合理性。相反,电解制氢的时间安排应考虑由电网内生的储能能力以及既有电源与新增可再生能源之间的时空互补性所允许的时间错配窗口。

English Abstract

Abstract Electrolytic hydrogen (e-H 2 ) is under scrutiny worldwide to become a primary vector for decarbonization. Production of e-H 2 in Brazil is a unique case study because of the singularities of the electricity grid, which has a continental scale, is highly decarbonized (93 % renewables in 2023), and incorporates substantial energy storage (210 TWh) and dispatch flexibility (circa 50 GW) in hydro reservoirs. In this distinctive context, this study evaluates the carbon intensity (quantified through a cradle-to-gate life cycle assessment) and the requirements to ensure the carbon integrity of grid-connected e-H 2 production. The study gathers inventories of solar and wind energy systems and alkaline electrolyzers. It also presents georeferenced modeling of carbon emission factors for solar and wind energy, along with hourly simulations of grid-connected e-H 2 production. Carbon intensities within 2.9–4.0 kgCO 2 eq kgH 2 −1 are calculated with solar energy and as low as 1.0 kgCO 2 eq kgH 2 −1 with wind energy. Energy sourcing from the best wind sites leads to the lowest carbon intensities, even if adding the impacts of long-distance (2000 km) transmission. Simulation of e-H 2 production with wind energy assisted by energy storage in hydro reservoirs shows that electrolysis at a high capacity factor (≈90 %) is possible without impacting grid emissions and reservoir functionality. This result demonstrates that the requirement of hourly matching between additional energy generation and consumption is unsound for e-H 2 production in a grid rich in renewables. Instead, the temporality of electrolysis must consider the permissible temporal unmatching enabled by the grid-based energy storage and the complementarity between the legacy and the additional renewable sources.
S

SunView 深度解读

该研究揭示大规模可再生能源电网中电解制氢的碳强度优化路径,对阳光电源ST系列储能变流器与PowerTitan系统具有重要启示。研究证实储能系统可实现电解槽90%容量因子运行而不增加电网碳排放,验证了时序匹配灵活性的价值。这为阳光电源开发风光储氢一体化解决方案提供理论支撑:通过GFM控制技术协调可再生能源波动与电解负荷,利用储能系统削峰填谷优化制氢经济性,并可结合iSolarCloud平台实现碳足迹追踪与智能调度,形成低碳制氢全栈方案的技术优势。