← 返回
枯竭气藏中氢气储存的水文地球化学模拟:基于局部与全局敏感性分析的启示
Hydrogeochemical modeling of hydrogen storage in depleted gas reservoirs: Insights from local and global sensitivity analysis
| 作者 | Zitong Huang · Katharine Maher · Anthony Robert Kovscek |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 391 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Full reaction network and 3-D dynamic modeling for underground hydrogen storage. |
语言:
中文摘要
摘要 地下氢气储存(UHS)通过应对可再生能源在地理位置依赖性、波动性和预测性方面的固有挑战,为大规模能源储存提供了可行方案。为了将可再生能源的储能能力从吉瓦时(GWh)提升至太瓦时(TWh),有必要对具备大容量且易于进入的潜在场地进行研究。氢气(H₂)在地下环境中可作为氧化还原反应中的还原剂,与矿物和水相组分发生反应。因此,建立气–卤水–矿物三相反应网络的模型,对于理解氢气(H₂(g))在地下储存过程中的行为至关重要。为满足这一需求,我们使用PHREEQC进行了时间依赖性的批处理模拟,以研究地下H₂(g)的损失过程。随后,将静态与动力学平衡反应的结果整合到PFLOTRAN中的多相反应性输运模型中,从而在储存条件下完整模拟了H₂(g)的损耗以及硫化氢(H₂S(g))的生成过程。该系列模拟反映了一个在H₂–H₂O–CO₂–SiO₂–Ca–Al–Fe–S体系中,H₂(g)与地下矿物之间发生的非生物反应网络。模拟结果表明,富含石英的砂岩储层是氢气储存的理想场所,其H₂(g)反应活性极低,且在卤水中溶解程度较小,导致一年内的总损失量约为1%。硫(S)和三价铁(Fe(III))的还原作用是控制地下H₂(g)损失的主要因素,额外造成1%–4%的损失,并显示出可能存在自催化效应的迹象。最后,我们在大量模拟和广泛参数空间的基础上开展了局部与全局敏感性分析,识别出水饱和度和温度是影响H₂(g)损失及H₂S(g)生成的关键参数。研究结果强调了降低矿物动力学速率表达式和反应表面积不确定性的重要性。
English Abstract
Abstract Underground hydrogen storage (UHS) offers a solution for large-scale energy storage by addressing the challenges of location dependence, fluctuation, and forecasting inherent in renewable energy sources . To increase renewable energy storage capacity from GWh to TWh, sites with large capacity and easy accessibility need to be investigated. Hydrogen (H 2 ) is a reductant in redox reactions with subsurface minerals and aqueous species. Therefore, modeling three-phase (gas–brine–mineral) reaction networks is crucial for understanding H 2 (g) behavior during underground storage . To meet this need, we performed time-dependent batch simulations of subsurface H 2 (g) loss using PHREEQC. Subsequently, the static and kinetic equilibrium reaction results were integrated into multiphase reactive transport models in PFLOTRAN, providing a complete simulation of H 2 (g) loss and hydrogen sulfide (H 2 S(g)) formation under storage conditions. The resulting suite of simulations reflects an abiotic reaction network among H 2 (g) and subsurface minerals in the H 2 –H 2 O–CO 2 –SiO 2 –Ca–Al–Fe–S system. The simulations highlight that quartz-rich sandstone reservoirs are ideal for hydrogen storage, with minimal H 2 (g) reactivity and dissolution in brine leading to around 1% total loss over a year. Reduction of sulfur (S) and ferric iron (Fe(III)) primarily controls subsurface H 2 (g) loss, contributing an additional 1 %–4 % loss and showing potential evidence of an autocatalytic effect. Finally, we conducted local and global sensitivity analysis over extensive simulations and a broad parameter space to identify water saturation and temperature as the key parameters influencing H 2 (g) loss and H 2 S(g) formation. Results underscore the importance of reducing uncertainty in minerals’ kinetic rate expression and reactive surface area.
S
SunView 深度解读
该地下氢储能研究为阳光电源储能系统提供重要参考。研究揭示石英砂岩储层氢损失率低于1%,验证了大规模TWh级氢储能可行性,可与PowerTitan储能系统形成互补方案。温度和水饱和度敏感性分析对ST系列PCS热管理优化具有指导意义。氢-硫化氢转化机理研究可启发电化学储能安全监测策略,提升iSolarCloud平台预测性维护能力,支撑光伏-储能-制氢一体化解决方案开发。