← 返回
基于混合储能系统与工况识别的电动拖拉机多目标能效管理优化
Multi-objective optimization for energy-efficient management of electric Tractors via hybrid energy storage systems and scenario recognition
| 作者 | Qiang Yu · Xionglin He · Yongji Chen · Zihong Jiang · Yilin Tan · Longze Liu · Bin Xi · Changkai Wen |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 391 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | The impact of scenario information on EMS for agricultural vehicles is investigated. |
语言:
中文摘要
摘要 电动拖拉机的推广应用面临诸多挑战,包括动力系统对多样化作业工况的适应性,以及能量效率与电池寿命的优化问题。本文提出一种用于电动拖拉机的混合储能系统(HESS)架构,并设计了一种基于犁地作业场景识别的多目标能效管理策略(EMS)。该策略首先利用实际犁地作业数据构建电动拖拉机模型及犁地工况循环(POC)。采用K均值聚类与主成分分析(PCA)进行离线工况分类,同时引入多层感知器神经网络(MLPNN)实现在线实时场景识别。此外,开发了一种多策略改进型黑翅鸢算法(MSIBKA),以高效求解自适应功率分配轨迹。仿真与硬件在环(HIL)实验结果表明,所提策略可有效延长HESS使用寿命,平滑电池输出功率,并降低运行成本。具体而言,超级电容器承担了超过65%的峰值功率需求,使电池C率降低10%以上。同时,所提系统使电池荷电状态(SOC)至少提升5%,并使运行成本和电池老化成本均降低33.3%以上。上述结果表明,所提出的系统架构与管理策略在延长电池寿命和提升能量效率方面具有显著优势。
English Abstract
Abstract The promotion of electric tractors faces significant challenges, including adapting powertrain systems to diverse operational conditions and optimizing energy efficiency and battery lifespan. This paper presents a hybrid energy storage system (HESS) architecture for electric tractors. And a multi-objective energy-efficient management strategy (EMS) based on plowing operation scenario recognition is proposed. The strategy involves developing an electric tractor model and a plowing operating condition (POC) cycle using real-world plowing data. Offline classification is performed using K-means clustering and Principal Component Analysis (PCA), while a Multilayer Perceptron Neural Network (MLPNN) is employed for online real-time scenario recognition. Additionally, a Multi-Strategy Improved Black-winged Kite Algorithm (MSIBKA) is developed to efficiently derive adaptive power allocation trajectories. Simulation and Hardware-in-the-Loop (HIL) experiments demonstrate that the proposed strategy effectively extends the lifespan of the HESS, smooths battery output, and reduces operating costs. Specifically, the supercapacitor supplies over 65 % of the peak power demand, reducing the battery C-rate by more than 10 %. Furthermore, the proposed system increases the state of charge (SOC) of the battery by at least 5 %, while reducing both operational costs and battery degradation costs by over 33.3 %. These results indicate that the proposed system and strategy provide substantial benefits in extending battery lifespan and enhancing energy efficiency.
S
SunView 深度解读
该混合储能系统(HESS)技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要参考价值。论文提出的多目标能量管理策略,通过超级电容承担65%峰值功率、降低电池C-rate超10%,与阳光电源储能PCS的功率分配优化理念高度契合。场景识别与自适应功率分配算法可应用于充电桩产品,提升电池寿命33.3%的成果为iSolarCloud平台的预测性维护功能提供算法创新思路,助力构建更智能的储能及充电基础设施解决方案。