← 返回
迈向碳中和:在综合能源系统规划中耦合碳矿化与跨季节能源存储
Towards net-zero: Coupling carbon mineralization with seasonal energy storage in integrated energy systems planning
语言:
中文摘要
摘要 随着气候变化加剧、能源需求不断上升以及可再生能源资源的间歇性特征日益显著,综合能源系统迫切需要实现深度碳减排并最大化能源利用效率的策略。本研究提出了一种创新的低碳规划模型,将先进的碳矿化技术与跨季节热能存储相结合,通过构建一种新型碳减排模型,将碳捕集电厂与电转气转换及矿化过程相耦合,将捕获的二氧化碳转化为稳定的碳酸盐和天然气,从而显著提升碳资源的利用水平,改善综合能源系统的环境与经济性能。同时,构建了基于地下洞穴的季节性热储存系统,用于回收上述碳转化反应及电厂烟气所产生的热能。所引入的洞穴热储模型考虑了环境温度与静态储存损耗,能够精确模拟储存热能的变化过程,有效提高能源利用效率,并缓解季节性负荷波动。在此基础上,进一步构建了一个双层规划模型,以整合涵盖碳捕集、再利用、余热回收与热储存的全链条碳减排方案。区域能源系统的仿真结果表明,该方法使碳利用率提升了22.7%,能源效率提高了3.81%,验证了该规划方案在推动能源系统向碳中和转型方面的潜力。
English Abstract
Abstract As climate change accelerates, alongside rising energy demands and intermittent renewable resources , integrated energy systems urgently require strategies that achieve deep carbon reductions while maximizing energy utilization. This study proposes an innovative low-carbon planning model that integrates advanced carbon mineralization technology with trans-seasonal thermal storage , enhancing both environmental and economic outcomes in integrated energy systems , by constructing a novel carbon reduction model that couples carbon capture power plants with power-to-gas conversion and mineralization processes, captured carbon dioxide is repurposed into stabilized carbonates and natural gas, thereby significantly enhancing carbon utilization. A seasonal thermal storage system based on underground caverns was constructed to utilize the thermal energy generated from the aforementioned carbon conversion reactions and power plant flue gases . By accounting for ambient temperature and static storage losses, the introduced cavern thermal storage model accurately simulates changes in stored thermal energy, effectively enhancing energy utilization efficiency and mitigating seasonal load fluctuations. Building on these foundations, a two-layer planning model was developed to integrate the proposed full-chain carbon reduction scheme, encompassing carbon capture, reutilization, waste heat recovery , and thermal storage. Simulation results of the regional energy system show that the methodology improves carbon utilization by 22.7 % and energy efficiency by 3.81 %, demonstrating the potential of the planning scheme to promote the transition of the energy system to net-zero carbon emissions .
S
SunView 深度解读
该跨季节储能与碳矿化耦合技术对阳光电源ST系列储能系统及PowerTitan方案具有重要启示。研究中的地下洞穴热储存与碳捕集全链条方案,可与我司储能PCS的多物理场耦合控制技术结合,通过优化GFM控制策略实现季节性负荷削峰填谷。碳转化反应余热回收思路可应用于储能系统热管理优化,提升能效3.81%的成果验证了多能互补架构价值。建议将该模型融入iSolarCloud平台,开发跨季节能量调度算法,并探索储能系统参与碳循环经济的商业模式,助力零碳综合能源解决方案落地。