← 返回
基于反向学习PSO算法的水-风-光-多储能互补系统短期优化调度
Short-term optimal scheduling of hydro–wind–PV and multi-storage complementary systems based on opposition-based learning PSO algorithm
| 作者 | Yaoyao Heab · Ning Xian |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 394 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Propose a hydro–wind–PV dispatch model combining battery storage and pumping station. |
语言:
中文摘要
摘要 在多能互补系统中引入储能系统可确保能源的高效利用与分配,提升系统的经济效益。然而,当前研究不仅缺乏在大规模水-风-光混合系统中应用储能的实践,且在互补系统中通常仅采用单一类型的储能系统,忽视了多种储能系统之间的协同效应。为弥补这一研究空白,本文提出一种考虑抽水蓄能与电池储能协调优化的水-风-光联合调度模型。通过该协同机制,储能系统能够进一步优化储能潜力的挖掘,提高能源利用效率。此外,针对短期优化问题,本文提出一种基于反向学习的粒子群优化算法(PSO-OBL)。所提出的模型与算法在中国西南地区某电网的实际案例中得到验证。结果表明,抽水蓄能与电池储能的联合集成显著提升了系统的经济性,且PSO-OBL算法在收敛性能和解的质量方面均优于传统算法。通过对4个典型日的分析发现,多类型储能系统能够在不同环境条件下有效协作,进一步提高能源自给率并最大化储能效益。与传统模型相比,系统经济性最高可提升3.01%,负荷自给率提高2.32%。本研究为多储能系统的优化调度提供了实际参考。
English Abstract
Abstract The introduction of energy storage systems in multi-energy complementary systems ensures efficient energy use and distribution, enhancing the system’s economic benefits. However, current research not only lacks the application of energy storage in large-scale hydro–wind–PV hybrid systems, but also uses only one type of energy storage system in the complementary system, neglecting the synergistic effect between various energy storage systems. To address this research gap, this study proposes a hydro–wind–PV joint scheduling model that considers the coordinated optimization of pumped storage and battery storage. Through this synergy, the energy storage systems can further optimize the exploitation of energy storage potential and improve energy utilization. Additionally, a particle swarm optimization algorithm based on opposite-based learning (PSO-OBL) is proposed, tailored for short-term optimization. The model and algorithm are validated through their application to a power grid in the southwest region of China. The results demonstrate that the integration of pumped storage and battery storage significantly enhances the system’s economic efficiency, and the PSO-OBL algorithm outperforms traditional algorithms in both convergence and solution quality. By analyzing 4 typical days, the findings show that multiple energy storage systems can effectively cooperate under varying environmental conditions, further improving energy self-sufficiency and maximizing the benefits of energy storage. Compared with the traditional model, the system’s economic efficiency can be improved by a maximum of 3.01 %, and the load self-sufficiency rate is increased by 2.32 %. This study provides practical reference for optimal scheduling of multiple energy storage systems.
S
SunView 深度解读
该水光储多能互补调度技术对阳光电源ST系列储能变流器和PowerTitan系统具有重要应用价值。研究中抽水蓄能与电池储能协同优化的思路,可启发我司PowerTitan液冷储能系统与电网侧大容量储能的协调控制策略开发。基于反向学习的PSO优化算法可集成至iSolarCloud平台,提升多能源场站短期调度精度。研究验证的经济性提升3.01%、自给率提高2.32%等指标,为我司推广风光储一体化解决方案提供量化依据,特别适用于西南水电富集区域的SG光伏逆变器与ST储能系统联合部署场景。