← 返回
储能系统技术 储能系统 ★ 5.0

新型基于CO2的电热能与地质储能三联产系统中表面过程的优化

Surface processes optimisation in a novel CO2-based electrothermal energy and geological storage trigeneration system

作者 A.Carro · C.Ortiz · S.Unger · A.Stoikosd · A.-S.Kyriakides · I.N.Tsimpanogiannis · J.A.Becerraa · S.Voutetakis · U.Hampel · R.Chacarteguia
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 395 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Optimised CO2 and energy storage system enhances efficiency and extends applications.
语言:

中文摘要

电热能储存是促进可再生能源高比例渗透的一项有前景的技术。近年来,已提出将这种储能系统与地质CO2封存相结合的方案。该系统由跨临界CO2循环构成的可逆热泵组成,并在两个温度水平上配备热能储存装置,从而实现地质CO2封存与可再生电能储存/发电的同时运行。本研究聚焦于高温和低温热能储存过程的分析。高温侧采用阶梯式加热方式,能够更好地匹配超临界与亚临界条件下CO2以及储热流体的温度分布特性。不同温度等级的热能储存可提高涡轮机入口温度,从而提升发电循环效率,并拓展区域供热或生活热水等供热应用。考虑配置四个高温储罐时,系统的往返效率从52.8%提升至55.4%。系统可满足约20–150°C的热需求覆盖范围,温升幅度约为30°C。低温侧相变温度的变化直接影响电力输出,并为新的制冷应用提供了可能。随着低温相变温度的降低,系统效率提高,在−30°C时效率可达58.7%。通过在跨临界CO2循环中采用其他优化构型,例如回热循环以及多级压缩与膨胀,可在降低系统要求的同时维持较高的效率水平。

English Abstract

Abstract Electrothermal energy storage is a promising technology for high penetration of renewable energy. In recent years, the integration of this energy storage system with geological CO 2 storage has been introduced. The system consists of a reversible heat pump formed by transcritical CO 2 cycles with thermal storage at two temperature levels, enabling the simultaneous operation of geological CO 2 storage and the storage/production of renewable electrical energy. This work focuses on studying high and low-temperature thermal energy storage. Step heating on the high-temperature side allows for better integration of the supercritical and subcritical temperature profiles of the CO 2 and the thermal storage fluid. Thermal storage at different temperature levels provides a higher turbine inlet temperature, improving the efficiency of the power production cycle and increasing heating applications such as district heating or domestic hot water. Considering four high-temperature tanks, round-trip efficiency increases from 52.8 to 55.4 %. It presents a thermal demand coverage range of about 20–150 °C, with temperature increases of approximately 30 °C. The phase change temperature shift on the low-temperature side directly impacts electric power production and enables new cooling applications. The system's efficiency increases as the low-temperature phase change temperature decreases, reaching 58.7 % at −30 °C. Using alternative configurations in the transcritical CO 2 cycle, such as the recuperative cycle and multi-stage compression and expansion, high-efficiency values can be maintained with lower system requirements.
S

SunView 深度解读

该CO2电热储能系统对阳光电源ST系列储能变流器和PowerTitan储能系统具有重要参考价值。其多温度级热储能技术可启发我们优化储能系统热管理策略,通过分级温控提升系统往返效率。文中58.7%的系统效率和-30°C至150°C的宽温度运行范围,为我们开发极端环境适应性储能产品提供思路。跨临界CO2循环的多级压缩膨胀技术,可借鉴应用于储能系统功率调节和能量管理优化,结合iSolarCloud平台实现预测性热管理,提升ST系列PCS在可再生能源高渗透场景下的适应性。