← 返回
储能系统技术 储能系统 ★ 5.0

通过斯塔克尔伯格博弈实现柔性负荷与风能的协同以促进可再生能源整合和经济效率

Synchronizing flexible loads with wind energy via Stackelberg game for renewable integration and economic efficiency

语言:

中文摘要

摘要 现代电力系统通过需求响应(DR)机制整合电动汽车(EV)和电池储能系统(BESS)等柔性负荷,使产消者能够参与能源管理。然而,主要挑战在于如何激励电动汽车用户调整其原本低成本的充电计划,以与分布式发电(如风能和光伏(PV)发电)相协调。这需要建立一种奖励机制,使其提供的经济激励优于用户原计划所能节省的成本。从数学建模的角度来看,主要难点在于由于对电动汽车和电池储能系统的建模中存在多个互斥或时间重叠的例外情况,导致难以求解该问题的对偶问题。本研究旨在通过基于激励的需求响应框架,优化光伏、风能与柔性电动汽车负荷之间的协同效应。为此提出了一种双层模型,并采用风电场聚合商与用户之间的斯塔克尔伯格博弈进行求解,从而降低用户成本并改善风能负荷匹配度。所提出的双层模型通过构建对偶形式被转化为单层等效模型,有效解决了因时间相关例外条件重叠而导致的建模复杂性问题。该模型在不同季节场景下均得到验证,结果表明该需求响应策略显著提升了聚合商和用户的综合效益。在一个示例案例中,用户的日能源成本最多降低了146.56欧元/天,而聚合商在一天内将风能发电与负荷之间的不匹配量减少了最多356千瓦时。结果还显示,更高的负荷灵活性和更大的风能装机容量能够进一步改善经济性和能源管理效果,凸显了可扩展的需求响应机会所带来的深远影响。

English Abstract

Abstract The modern electric grid enables prosumers’ participation in energy management by integrating flexible loads like electric vehicles (EVs) and battery energy storage systems (BESS) via demand response (DR). However, the main challenge lies in motivating EV owners to adjust their low-cost charging plans to align with distributed generation, e.g., wind and photovoltaic (PV) power. This requires a reward system with more attractive financial incentives than the customers’ initially planned savings. From the mathematical standpoint, the primary challenge lies in finding the dual of the problem due to the presence of several disjoint or overlapping time-based exceptions in the modeling of EVs and BESS. This study aims to optimize the synergy between PV, wind, and flexible EV loads via an incentive-based DR framework. A bi-level model is proposed and solved using a Stackelberg game between a wind-farm aggregator and customers, reducing customer costs and improving wind-load matching. The proposed bi-level model is transformed into a single-level equivalent through a dual formulation, addressing the complexities of overlapping time-based exceptions causing redundancies. Validated across seasons, the results highlight the DR’s success in enhancing aggregator and customer outcomes. In an example case, customer energy costs dropped by up to 146.56 €/day, and the aggregator reduced the wind energy-load mismatch by up to 356 kWh in one day. Results show that greater load flexibility and wind capacity enhance economic and energy management outcomes, highlighting the impact of scalable DR opportunities.
S

SunView 深度解读

该Stackelberg博弈优化框架对阳光电源储能及充电业务具有重要价值。研究中的风光-储-充协同调度模型可直接应用于ST系列PCS与充电站的联合控制策略,通过双层优化实现需求响应激励机制设计。论文提出的时间约束对偶求解方法可优化PowerTitan储能系统的充放电计划,提升风光消纳率达356kWh/日。建议将该博弈框架集成至iSolarCloud平台,结合虚拟电厂场景开发智能调度算法,增强光储充一体化解决方案的经济性与灵活性,支撑分布式能源聚合商业务拓展。