← 返回
储能系统技术 储能系统 ★ 5.0

离岸还是岸上制氢?对荷兰北海地区成本与运行考量的批判性分析

Offshore or onshore hydrogen production? A critical analysis on costs and operational considerations for the Dutch North Sea

作者 R.Travaglinia1 · L.S.F.Frowijnb1 · A.Bianchini · Z.Lukszo · K.Bruninx
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 397 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Cost and operational analysis of centralized and decentralized offshore hydrogen systems.
语言:

中文摘要

摘要:北海地区雄心勃勃的海上风电发展目标亟需创新解决方案,以高效地将能源输送至陆上需求点。风能制氢系统为此提供了有前景的路径,其系统配置可分为三种典型模式:集中式岸上电解(C-ON)、集中式离岸电解(C-OFF)以及在每台风力涡轮机处部署的分布式离岸电解(D-OFF)。本研究提出了一种高分辨率、时间依赖的模拟框架,能够针对离岸风能制氢系统进行以运行动态和综合成本估算为重点的分析。该框架可对D-OFF进行详细分析,捕捉其因直接连接单台风机所带来的独特运行特性,包括动态运行的影响。从风电场到氢气承购方的全系统综合分析表明,2030年后氢气的平准化成本(LCOH)范围广泛,介于3.0至10.5欧元/千克氢气之间。在所分析的不同情景中,采用质子交换膜电解技术的C-OFF方案实现了最低的LCOH,这归因于对离岸电力基础设施需求的减少、规模经济效应以及高效的动态运行特性。采用碱性电解技术的D-OFF方案成本最高,并面临诸多运行挑战,例如当电解槽偶尔无法达到最低负载阈值时会停机,从而降低氢气产量。本文展示了不同系统配置在成本、产氢率和电解槽堆寿命之间的权衡关系。本研究所得见解可为荷兰北海地区大规模风能制氢系统的部署提供决策支持的起点。

English Abstract

Abstract Ambitious offshore wind energy targets in the North Sea necessitate innovative solutions for efficiently delivering energy to onshore demand locations. Wind-to-hydrogen systems offer a promising pathway, with three archetypes of system configurations: centralized onshore electrolysis (C-ON), centralized offshore electrolysis (C-OFF), and decentralized offshore electrolysis at each wind turbine (D-OFF). This study introduces a high-resolution, time-dependent simulation framework capable of analyzing offshore wind-to-hydrogen systems with a focus on operational dynamics and comprehensive cost estimation. The framework enables detailed analysis of D-OFF, capturing its unique dynamics driven by direct connections to individual wind turbines, including the impacts of dynamic operation. A comprehensive system analysis, spanning from the wind farm to the hydrogen offtaker, reveals a wide cost range, with Levelized Cost of Hydrogen (LCOHs) ranging from 3.0 to 10.5€/kgH 2 post 2030. Among the different scenarios analyzed, C-OFF with proton exchange membrane electrolysis achieves the lowest LCOHs due to a reduced need for offshore electrical infrastructure, economies of scale, and efficient dynamic operating characteristics. D-OFF with alkaline electrolysis incurs the highest costs and faces operational challenges, such as electrolyzers shutting down when they occasionally fail to reach the minimum load thresholds, lowering hydrogen production. We illustrate the trade-offs between system configurations’ cost, production rate, and electrolyzer stack lifetime across configurations. Insights from this study can be utilized as a starting point for informed decision-making for large-scale wind-to-hydrogen deployment in the Dutch North Sea region.
S

SunView 深度解读

该海上风电制氢研究对阳光电源ST系列储能变流器和PowerTitan系统具有重要启示。研究表明集中式海上电解(C-OFF)配置因规模效应和动态运行特性实现最低制氢成本,这与阳光电源PCS在波动性可再生能源场景下的动态响应优势高度契合。ST系列可为海上电解系统提供高效电力转换,GFM控制技术能应对风电波动,三电平拓扑提升转换效率。研究揭示的电解器最小负载阈值挑战,可通过集成储能系统平抑功率波动解决,为阳光电源风-氢-储一体化解决方案提供技术方向。