← 返回
基于深度Q网络并考虑充放电次数的电池储能系统控制策略
Deep Q-network based battery energy storage system control strategy with charging/discharging times considered
| 作者 | Jun Cai · Maowen Fua · Ying Yana · Zhong Chenb · Xin Zhang |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 398 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | The optimal decision-making process of EMS is formulated as [Markov Decision Process](https://www.sciencedirect.com/topics/engineering/markov-decision-process "Learn more about Markov Decision Process from ScienceDirect's AI-generated Topic Pages") (MDP). |
语言:
中文摘要
摘要 电池储能系统(BESS)在维持用户侧电力供需平衡中发挥着关键作用。本文提出了一种基于深度Q网络(DQN)算法的BESS能量管理系统(EMS),该系统充分考虑了电池的充放电次数限制。首先,建立了EMS的数学模型;随后,将EMS的最优决策过程建模为马尔可夫决策过程(MDP),并在此基础上设计了相应的MDP公式与DQN算法,以根据负荷情况制定合理的充放电调度计划。最后,基于中国贵州省遵义市某线路的实际负荷数据开展了实验研究。测试结果表明,本研究所提出的优化方法可将电网功率波动的最大方差降低至原始方差的49%,同时将电池充放电循环次数减少至初始值的1/3至1/2范围内。该方法有效延缓了电池老化进程,提升了能量管理策略的经济性与实用性。
English Abstract
Abstract The Battery Energy Storage System (BESS) plays a pivotal role in maintaining the balance of electricity supply and demand on the user side. This paper proposes an energy management system (EMS) for the BESS based on the Deep Q-Network (DQN) algorithm that takes into account the battery charging and discharging times. Initially, a mathematical model of the EMS is established. Subsequently, the optimal decision-making process of EMS is formulated as Markov Decision Process (MDP), and based on this, the MDP formula and DQN algorithm are designed to design charging/discharging schedules based on load conditions. Finally, an experimental study was conducted based on the actual load data of a certain line in Zunyi, Guizhou, China. The test results show that the optimization method proposed in this study reduces the maximum variance of power grid fluctuations to 49 % of the original variance, while reducing the number of battery charging and discharging cycles to the range of 1/3 to 1/2 of the initial value . This delays the battery aging process, improving the economic and practical efficiency of energy management strategies.
S
SunView 深度解读
该DQN深度强化学习储能控制策略对阳光电源ST系列PCS及PowerTitan储能系统具有重要应用价值。通过MDP建模优化充放电决策,可将电网波动方差降至49%,充放电次数减少50-67%,显著延缓电池老化。该算法可集成至iSolarCloud平台,结合阳光电源三电平拓扑和GFM控制技术,提升用户侧储能EMS智能化水平,增强削峰填谷效果,降低全生命周期成本,为工商业储能解决方案提供AI优化新思路。