← 返回
储能系统技术 储能系统 ★ 5.0

用于储能的可逆固体氧化物电解槽:储能平准化成本估算

Reversible solid oxide electrolyser for energy storage: levelized cost of storage estimation

作者 Jingjing Liang · Yi Zhaoa · Du Wena · Ye Huang · Minfang Hanb · François Maréchal
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 399 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Optimal X is identified for the rSOE-based P2X2P system.
语言:

中文摘要

摘要 可逆固体氧化物电解槽(rSOE)因其固有的可逆性、电解模式下的共电解能力、高效率、对多种燃料的适应性,以及在处理碳基燃料时于燃料电池模式(SOFC)下浓缩CO2的能力,成为长时储能领域极具前景的解决方案。然而,其在电能-燃料-电能(P2X2P)应用中的经济可行性仍缺乏深入研究。本研究评估了一个250 MW规模的rSOE系统在六种不同储能形式下的储能平准化成本(LCOS),考虑了不同的放电持续时间(168–1440小时)和年度充放电循环次数(1–30次)。研究发现,储存在盐穴中的H2、储存在天然气管网中的CH4以及储存在储罐中的CH3OH是最具可行性的储能选项。本文还分析了电堆寿命及其衰减对LCOS的影响,结果表明延长电堆寿命所带来的LCOS改善效益有限。此外,针对放电持续时间超过700小时、每年进行1至3次充放电循环的情景,计算了在10 MW至1000 MW不同rSOE规模下实现0.2美元/kWh LCOS目标所需的资本支出(Capex)阈值。结果表明,在较小规模和较短放电持续时间下,盐穴储氢最具成本优势;而在更大规模和更长持续时间下,天然气管网储甲烷则更具经济性。同时发现,为达到0.2美元/kWh的LCOS目标,rSOE存在最低部署规模,且该最低规模随不同的能量载体和储能场景而变化。此外,本研究还揭示了碱性水电解槽(AWE)和质子交换膜水电解槽(PEMWE)实现0.2美元/kWh LCOS目标所需的Capex阈值。结果表明,由于具备可逆运行特性,rSOE在兆瓦级季节性储能应用中优于AWE和PEMWE。对于碳基燃料(CH4、CH3OH),rSOE展现出独特优势:其反向SOFC模式可天然实现CO2浓缩,从而显著降低CO2捕集成本。

English Abstract

Abstract Reversible Solid Oxide electrolyser (rSOE) is a promising solution for long-duration energy storage due to its exceptional features such as inherent reversibility, co-electrolysis capability in electrolysis mode, high efficiency, adaptability to multiple fuels and the ability to concentrate CO 2 in fuel cell mode (SOFC) during the processing of carbon-based fuels. However, its economic viability in power-to-X-to-power (P2X2P) applications remains underexplored. This study evaluates the levelized cost of storage (LCOS) of a 250 MW rSOE across six energy storage forms, considering different discharging durations (168–1440 h) and varied annual charging–discharging cycles (1–30). H 2 stored in salt caverns, CH 4 stored in gas grids and CH 3 OH stored in tanks are identified as the most viable storage options. The impact of stack lifetime and degradation on LCOS is also analyzed, revealing that associated benefits in terms of LCOS from extending the stack lifetime are marginal. Furthermore, Capital expenditure (Capex) thresholds for achieving an LCOS target of 0.2 $/kWh are calculated for rSOE scales ranging from 10 MW to 1000 MW under scenarios with discharging durations exceeding 700 h and 1–3 charging–discharging cycles per year. Results indicate that H 2 stored in salt caverns is optimal for smaller scales and shorter discharging durations, while CH 4 stored in gas grids becomes more cost-effective at larger scales with longer durations. Also, it is found that there is a minimum deployment scale for rSOE to meet the LCOS target of 0.2 $/kWh. The minimum deployment scale varies with different energy carriers and energy storage scenarios. Moreover, the Capex thresholds to achieve 0.2 $/kWh LCOS for Alkaline Water Electrolyser (AWE) and Proton Exchange Membrane Water Electrolyser (PEMWE) are also uncovered. The results revealed that rSOE outperforms AWE and PEMWE at MW-scale seasonal energy storage due to its reversibility. For carbon-based fuels (CH 4 , CH 3 OH), rSOE demonstrates unique advantages, as its reverse SOFC mode inherently enables CO 2 concentration, significantly reducing CO 2 capture costs.
S

SunView 深度解读

可逆固体氧化物电解技术(rSOE)为长时储能提供新思路,对阳光电源ST系列储能系统和PowerTitan产品线具有战略参考价值。研究表明MW级季节性储能场景下,rSOE通过双向运行和多燃料适配性实现0.2$/kWh的平准化储能成本目标。这启发我们在PCS拓扑设计中强化双向功率变换效率,结合iSolarCloud平台开发长周期充放电策略优化算法,并探索氢储能与现有储能系统的混合配置方案,提升大规模储能项目经济性。其CO2捕集能力也为碳中和场景下的储能系统集成提供创新方向。