← 返回
储能系统技术 储能系统 ★ 5.0

基于人工智能技术的钒氧化还原液流电池

VRFB)能量效率研究

作者 Rasoul Talebia · Ali Pouria · Pouya Zakerabbas · Sina Maghsoud · Sajjad Habibzade
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 399 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 The energy efficiency of vanadium redox flow batteries (VRFBs) is evaluated.
语言:

中文摘要

摘要 钒氧化还原液流电池(VRFB)为大规模储能应用提供了一种可持续且可靠的解决方案。本研究首次采用高斯过程回归(GPR)模型,对VRFB的能量效率进行参数间相关性的全面数据驱动分析及预测。共从文献中收集了420组VRFB数据集,并选取10个结构特征和2个操作特征作为输入参数。研究发现,在活性面积较大的VRFB电池中,即在中试至商业化规模的应用中,蛇形流场结构、较高的电解液浓度、较厚的电极以及更高的毡材压缩率更为普遍。结果表明,电流密度、膜类型和电极处理方式分别具有-0.4167、0.2862和0.1546的皮尔逊相关系数,显著影响VRFB的能量效率。此外,所构建的机器学习模型能够准确预测VRFB的相关能量效率,其中以GPR-Matern5/2模型精度最高。其训练集和测试集的R²值分别为0.9933和0.9565,显示出近乎完美的预测准确性,证明该模型具有高度可靠性。本研究为提升VRFB性能、推动其实际应用以及实现人工智能驱动的电池设计提供了关键见解。

English Abstract

Abstract Vanadium redox flow battery (VRFB) offers a sustainable and reliable solution for large-scale energy storage applications. This study represents the first investigation into the comprehensive data-driven analysis of inter-parameter correlation and prediction of the energy efficiency of VRFBs utilizing the Gaussian Process Regression (GPR) model. Namely, 420 VRFB datasets were collected from the literature, whereas 10 structural and 2 operational features are considered input parameters. Indeed, in the VRFB cells with the greater active area, i.e., pilot-to-commercial-scale applications, the Serpentine flow field configuration, higher electrolyte concentration, thicker electrodes, and higher felt compression are more prevalent. The outcomes reveal that the current density, membrane type, and electrode treatment with the respective Pearson correlation coefficient values of −0.4167, 0.2862, and 0.1546 significantly affect the VRFBs' energy efficiency. Besides, the developed ML models can accurately result in the associated energy efficiency in the VRFBs, with the highest accuracy of the GPR- Matern5/2. The training and testing R 2 values are 0.9933 and 0.9565, respectively, indicating near-perfect accuracy, making it a reliable model. This research paves the way for improving VRFB performance, advancing its practical application, and providing key insights into AI-driven battery design.
S

SunView 深度解读

该VRFB能效AI预测技术对阳光电源ST系列储能变流器及PowerTitan液流储能系统具有重要参考价值。研究揭示电流密度、隔膜类型等关键参数对能效影响规律,可指导我们优化PCS功率调度策略和电堆运行参数。GPR机器学习模型的高精度预测能力(R²>0.95)可集成至iSolarCloud平台,实现液流电池健康状态预测性维护,提升大规模储能系统全生命周期能效。蛇形流场、电解液浓度等结构优化经验可应用于商业化液流储能产品设计,推动阳光电源在长时储能领域的技术创新。