← 返回
氢能与燃料电池
★ 4.0
探究低温共烧结制备具有Ni-GDC活性层的Ni-YSZ支撑固体氧化物电解池的可行性
Investigating viability of low temperature co-sintering to produce Ni-YSZ supported solid oxide electrolysis cells with a Ni-GDC active layer
| 作者 | Morten Phan Klitko · Albert Lopez de Moraga · Julian Taubman · Stéven Pirou · Peyman Khajav · Peter Vang Hendrikse · Henrik Lund Frandse |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 400 卷 |
| 技术分类 | 氢能与燃料电池 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | Co-sintering at 1250 ∘C was demonstrated for a Ni-GDC active layer in a Ni-YSZ supported SOC. |
语言:
中文摘要
摘要 固体氧化物电池(SOC)由于其无与伦比的效率,适用于大规模电解应用。目前燃料电极支撑型电池的性能瓶颈在于Ni-YSZ燃料电极,其在高电流密度下会发生严重的退化,从而限制了氢气的生产能力。为克服上述限制,本研究展示了将Ni-GDC(Ce0.9Gd0.1O1.95)燃料电极集成到共烧结薄电解质电池中的可行性。Ni-GDC在电解质支撑型电池中广泛应用,且未表现出类似的退化现象。本研究在制造工艺上的创新之处在于将共烧结温度降低至1250°C,以抑制GDC与氧化锆基电解质之间的有害互扩散。实验表明,在1250°C下能够成功制备出可测试且气密性良好的电池,且降低烧结温度有效减少了组分间的互扩散。然而,对所制备电池的显微结构表征显示,燃料电极中的GDC与ScYSZ电解质(Sc2O3-Y2O3稳定化的ZrO2)之间接触不良。这是导致电化学性能相比Ni-YSZ电极电池下降约50%的主要原因。尽管性能较差,但与Ni-YSZ燃料电极电池相比,该电池的长期稳定性有所提升。一项在−1至−1.75 A/cm²电流密度范围内持续运行超过500小时的测试表明,未发生镍的迁移现象。此外,尽管GDC存在较大的化学膨胀,该电池结构并未出现机械失效。如果未来的研究能够解决电极与电解质之间的界面接触问题,本文所提出的电池结构有望显著提高SOC的单位面积氢气产率。
English Abstract
Abstract Solid oxide cells (SOC) are attractive for large scale electrolysis because of their unmatched efficiency. The current performance limitation for fuel electrode supported cells, is the Ni-YSZ fuel electrode, which suffers critical degradation at high current density. This limits their hydrogen production capacity. Aiming to overcome said limitation, this work demonstrates the integration of Ni-GDC (Ce 0.9 Gd 0.1 O 1.95 ) fuel electrodes into co-sintered thin electrolyte cells. Ni-GDC is widely used in electrolyte supported cells without signs of similar degradation. The novelty of the manufacturing approach adopted was to reduce the co-sintering temperature to 1250 ∘ C to limit detrimental interdiffusion between GDC and the zirconia-based electrolyte. It was possible to make testable and gas-tight cells at 1250 ∘ C, and the temperature reduction was effective at reducing interdiffusion. However, microstructural characterization of the realized cells documented poor contact between GDC in the fuel electrode and the ScYSZ electrolyte (Sc 2 O 3 -Y 2 O 3 stabilized ZrO 2 ). This was the main cause for an approximate 50 pct drop in electrochemical performance compared to cells with Ni-YSZ electrodes. Despite the poor performance, the long-term stability was found to be improved relative to Ni-YSZ fuel electrode cells. One test operating between −1 and −1.75 A/cm 2 for more than 500 h showed no Ni migration. Moreover, it was found that this cell layout did not suffer mechanical failure despite large chemical expansions of GDC. If future work can solve the electrode-electrolyte contact issue, the reported cell concept has the potential to enable a significant increase in the area specific hydrogen production capacity of SOCs.
S
SunView 深度解读
该固体氧化物电解池技术对阳光电源氢能储能系统具有战略价值。研究中Ni-GDC电极在高电流密度下的长期稳定性改善,可为ST系列储能变流器的电解制氢应用提供技术参考。低温共烧结工艺(1250°C)降低界面扩散的思路,与阳光电源功率器件的热管理优化理念契合。虽然当前电化学性能下降50%,但500小时无Ni迁移的稳定性表现,为大规模绿氢制备的长寿命需求提供解决方案。建议结合iSolarCloud平台的预测性维护技术,监测电解池性能退化,推动光伏-储能-制氢一体化系统开发。