← 返回
基于不平衡配电节点边际电价驱动的配电网与智能充电枢纽分布式协同调度
Distributed cooperative scheduling for distribution network and smart charging hubs driven by unbalanced distribution locational marginal price
| 作者 | Tiange Lia · Menglin Zhang · Zhijian Hua · Xiaofei Wangc · Yue Zhoud · Mingyu Yane |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 401 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A distributed scheduling strategy is proposed for the distribution network and smart charging hubs. |
语言:
中文摘要
摘要 低碳能源转型为配电网(PDN)的运行带来了新的挑战。特别是单相负荷和分布式可再生能源的不断增长,加剧了配电网内的三相不平衡问题。智能充电枢纽作为交通电气化的低碳单元,集成了光伏发电(PV)、储能(ES)和电动汽车(EV)充电设施,能够通过调节三相功率实现相间平衡能力。然而,现有的配电市场缺乏有效机制来激励光伏-储能-电动汽车一体化智能充电枢纽(PEV-Hubs)参与缓解三相不平衡。本文提出了一种由三相配电节点边际电价(DLMP)驱动的分布式优化框架,用于协调配电网与PEV-Hubs主动抑制相间不平衡。构建了一个双层优化模型以刻画配电系统运营商(DSO)与PEV-Hubs之间的交互关系。在下层,基于考虑电压不平衡约束的支路潮流模型建立了三相配电市场出清模型,从而生成不平衡的DLMP;在上层,PEV-Hubs将下层提供的不平衡DLMP作为输入,优化相间功率分配以最大化自身收益。为求解该双层模型,采用Karush-Kuhn-Tucker(KKT)条件和强对偶理论将双层问题重构为单层问题。随后提出一种基于对偶问题分解的新型分布式求解方法,以保障各参与主体的数据隐私。在两个不同规模系统上的仿真结果表明,所提方法能有效抑制配电网中的电压不平衡,并提升DSO与PEV-Hubs双方的经济收益。与传统迭代算法相比,所提出的分布式求解方法展现出更优的收敛性和解的最优性。
English Abstract
Abstract The low-carbon energy transition introduces new challenges to the operation of power distribution networks (PDN). In particular, the growing proliferation of single-phase loads and distributed renewable energies exacerbates three-phase imbalances within the PDN. The smart charging hub, as a low-carbon unit for transportation electrification, integrating photovoltaic (PV) generation, energy storage (ES), and electric vehicle (EV) charging infrastructure, processes phase-balancing capabilities by regulating the three-phase power. However, existing distribution markets lack effective mechanisms to incentivize the participation of PV-ES-EV integrated smart charging hubs (PEV-Hubs) in mitigating imbalances. This paper proposes a three-phase distribution locational marginal price (DLMP)-driven distributed optimization framework that coordinates PDN and PEV-Hubs to actively mitigate phase imbalances. A bi-level optimization model is formulated to capture the interaction between the distribution system operator (DSO) and PEV-Hubs. At the lower level, a three-phase distribution market clearing model is established based on the branch power flow model with voltage imbalance constraints, which can generate unbalanced DLMPs. At the upper level, PEV-Hubs optimize phase-to-phase power allocation to maximize revenue by taking unbalanced DLMP from the lower level as inputs. To solve the bi-level model, the Karush-Kuhn-Tucker (KKT) conditions and strong duality theory are employed to reformulate the bi-level problem into a single-level problem. A novel distributed solution method based on dual problem decomposition is then proposed for privacy protection. Simulation results on two different-scale systems confirm that the proposed method effectively limits the voltage imbalance in the PDN and enhances economic benefits for both the DSO and PEV-Hubs. Compared to the traditional iterative algorithms, the proposed distributed solution method exhibits better convergence and solution optimality.
S
SunView 深度解读
该三相不平衡DLMP调度技术对阳光电源光储充一体化解决方案具有重要价值。可应用于ST系列PCS的三相功率动态分配优化,结合充电桩产品实现相间负荷主动平衡控制。论文提出的分布式优化框架可融入iSolarCloud平台,通过实时电价信号驱动储能系统和充电站协同调度,在降低配网电压不平衡度的同时提升系统经济性。该机制为阳光电源开发具备相位平衡功能的智能充电站及微网能量管理系统提供理论支撑,可增强产品在配电侧辅助服务市场的竞争力。