← 返回
光伏发电技术 可靠性分析 ★ 4.0

基于灰狼优化与LSTM预测结合蒙特卡洛不确定性分析的太阳能-地热能集成多联产系统热力学分析与性能提升:以特内里费岛为例

Thermodynamic analysis and performance enhancement of an integrated solar–geothermal polygeneration system using grey wolf optimization and LSTM-based forecasting with Monte Carlo uncertainty analysis: A case study on Tenerife Island

作者 Ali Shokri Kalan · Mohammadreza Babaei Khuyinrud · Farshad Jahangiri · Ramin Ahmadi · Amir Mahboubi · Xiaoshu Lüa · Marc A.Rosen
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 401 卷
技术分类 光伏发电技术
技术标签 可靠性分析
相关度评分 ★★★★ 4.0 / 5.0
关键词 A case study on an efficient polygeneration system using solar and geothermal energy.
语言:

中文摘要

全球变暖和化石燃料供应限制凸显了可持续能源选择的必要性。基于可再生能源的系统为实现碳中和提供了途径,但由于间歇性问题而面临可靠性挑战。本研究探讨了特内里费岛整合太阳能与地热能的潜力。提出了一种新型混合系统,该系统结合了聚光太阳能发电、地热能资源以及由以下组件构成的能量利用系统:超临界CO₂循环、溴化锂-水吸收式制冷系统、多效蒸馏脱盐装置、三级有机朗肯循环和质子交换膜电解槽。该系统可同时生产电力、供热、制冷、淡水和氢气,其基准能量效率和㶲效率分别为62%和17%。系统的产出速率分别为:7844 kW电力、4416 kW制冷量、6848 kW供热量、22.6 kg/h氢气产量和20.7 m³/h淡水产量。采用灰狼算法进行优化后,能量效率提升了21%,㶲效率提升了38%,氢气产量提高了18%。太阳能预测采用2005年至2024年的直接法向辐照度数据,并利用序列到序列的长短期记忆网络(seq2seq LSTM)模型对至2030年的数据进行预测。通过蒙特卡洛模拟开展的前向不确定性分析表明,制冷能力、㶲损率和净发电量对直接法向辐照度波动最为敏感,变异系数(CV)介于4.4%至4.5%之间;而能量效率和㶲效率的变异系数极小(CV < 0.1%)。

English Abstract

Abstract Global warming and fossil fuel supply limitations highlight the need for sustainable energy options. Renewable-based systems provide a path to carbon neutrality but face reliability challenges due to intermittency. This study investigates Tenerife Island's potential for integrating solar and geothermal energy. A novel hybrid system is proposed, combining concentrated solar power, geothermal energy resources, with a system comprised of the following components: a supercritical CO₂ cycle, a lithium bromide-water absorption cooling system, a multi-effect desalination unit, a three-stage organic Rankine cycle and a proton exchange membrane electrolyzer. This system produces electricity, heating, cooling, freshwater, and hydrogen, achieving baseline energy and exergy efficiencies of 62 % and 17, respectively. The system's production rates are 7844 kW power, 4416 kW cooling, 6848 kW heating, 22.6 kg/h hydrogen, and 20.7 m 3 /h freshwater. Optimization using the grey wolf algorithm enhances the energy efficiency by 21 %, the exergy efficiency by 38 %, and the hydrogen production rate by 18 %. Solar energy forecasting employs direct normal irradiance data (2005–2024) with seq2seq long short-term memory predictions up to 2030. A forward uncertainty analysis using Monte Carlo simulations reveals that cooling capacity, exergy destruction rate, and net power production are most sensitive to fluctuations in direct normal irradiance, with coefficients of variation (CV) ranging from 4.4 % to 4.5 %, while energy and exergy efficiencies exhibit minimal coefficient of variation (CV < 0.1 %).
S

SunView 深度解读

该多能互补系统研究对阳光电源ST储能系统与SG逆变器协同优化具有重要参考价值。灰狼算法优化使能效提升21%、火用效率提升38%,可应用于iSolarCloud平台的多能源协调控制策略。LSTM预测模型结合蒙特卡洛不确定性分析,可增强储能系统在间歇性可再生能源场景下的调度可靠性。系统集成制氢、制冷、淡化多负载的拓扑设计,为阳光电源拓展氢能产业链及综合能源解决方案提供技术路径,特别是在海岛微网等高可靠性需求场景的应用创新。