← 返回
光伏发电技术 可靠性分析 ★ 5.0

使用遗传算法优化带储能的独立混合可再生能源系统设计:风能与太阳能时间互补性影响分析

Optimizing the design of stand-alone hybrid renewable energy systems with storage using genetic algorithms: Analysis of the impact of temporal complementarity of wind and solar sources

作者 Jose Luis Munoz-Pincheira · Lautaro Salazar · Felipe Sanhueza · Armin Lüer-Villagr
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 341 卷
技术分类 光伏发电技术
技术标签 可靠性分析
相关度评分 ★★★★★ 5.0 / 5.0
关键词 The impact of solar-wind complementarity on NPC becomes more significant as the allowable LPSP decreases.
语言:

中文摘要

摘要 本研究分析了风能与太阳能之间的时间互补性对带储能的独立混合可再生能源系统(HRES)最优设计的影响。研究在GNU Octave中开发了一个采用固定随机种子的遗传算法模型,以确保结果的可重复性并实现不同情景之间的比较。目标是在满足由电力供应缺失概率(LPSP)定义的可靠性约束条件下,最小化净现值成本(NPC)。在不同互补性水平下评估了恒定和可变负荷曲线,结果表明其影响依赖于负荷类型。此外,对LPSP、电池成本和折现率进行了敏感性分析,揭示了这些参数如何影响最优系统配置。结果表明,在可靠性要求严格的场景中,较高的互补性能够显著降低NPC。从环境角度看,一个日供电量为1470 kWh的HRES系统相较于化石能源发电,每年可减少108至375吨的二氧化碳排放。这些发现对于正在推进脱碳进程国家的能源规划至关重要,有助于支持分布式发电的投资决策,并减轻弃电现象对集中式电力系统的不利影响。

English Abstract

Abstract This study analyzes the impact of temporal complementarity between wind and solar sources on the optimal design of stand-alone hybrid renewable energy systems with storage (HRES). A model was developed in GNU Octave that uses a fixed-seed genetic algorithm to ensure reproducibility and compare scenarios. The objective is to minimize the Net Present Cost (NPC) while complying with a reliability constraint defined by the LPSP (Loss of Power Supply Probability). Constant and variable load profiles are evaluated under different levels of complementarity, showing that their influence depends on the type of demand. Furthermore, a sensitivity analysis is performed on the LPSP, battery cost, and discount rate, demonstrating how these parameters affect the optimal configuration. The results indicate that high complementarity can significantly reduce the NPC, especially in contexts with strict reliability requirements. In environmental terms, an HRES supplying 1470 kWh per day would avoid between 108 and 375 tons of CO 2 per year, compared to a fossil source. These findings are key to energy planning in countries moving toward decarbonization, supporting investment decisions in distributed generation and mitigating the effects of curtailment on centralized systems.
S

SunView 深度解读

该研究对阳光电源混合储能系统具有重要指导意义。风光互补性优化可直接应用于ST系列储能变流器与SG光伏逆变器的协同配置策略,通过遗传算法优化LPSP可靠性指标,支撑PowerTitan储能系统容量设计。研究中的NPC成本优化模型可集成至iSolarCloud平台,实现分布式发电项目的智能规划与预测性运维。特别是在严格可靠性要求场景下,高互补性配置可显著降低系统成本,为阳光电源1500V系统及三电平拓扑技术在离网混合系统的应用提供理论依据,助力碳中和目标实现。