← 返回
固体氧化物电解池系统的热管理:集成原理、与外部热源的耦合及储热技术的整合
Thermal management of solid oxide electrolysis cell systems: Integration principles, coupling with external heat sources and integration of heat storage technologies
| 作者 | Titouan Fabiania · Nolwenn Le Pierrès · Patrice Tochon · Pierre Dumoulin |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 401 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 多物理场耦合 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | Thermal coupling between SOEC and external heat source decreases H2 production cost. |
语言:
中文摘要
摘要 为了实现高效且低成本的运行,固体氧化物电解池(SOEC)系统需要设计良好的热集成架构。本文探讨了SOEC的热集成及其与外部热源的热耦合。此类热耦合可使SOEC系统显著受益,能够将总电力消耗降低17%。文中综述了提出此类热耦合的各类系统,重点分析了热源的性质与温度以及SOEC的运行模式。运行模式的选择受到可用热输入、系统效率、产率和耐久性等因素的影响。本文特别关注在SOEC系统架构中集成储热系统的问题。SOEC系统的运行必须连续且稳定,以避免产生温度梯度和压力差。当与波动性热源耦合时,储热提供了一种非常有前景的解决方案,用以匹配热量的供需。在集成储热系统的情况下,SOEC系统架构可分为三种配置。第一种配置包含流体回路,适用于显热储热系统。第二种配置中,蒸汽直接由输入热量产生,因此更适合采用相变储热或蓄能器等蒸汽储热系统。最后一种配置则对应于在燃料电池(SOFC)模式下产生的热量进行储存,并在电解(SOEC)模式下加以利用。在此情况下提出了多种储热方案,可使系统的往返效率提高5%至13%。
English Abstract
Abstract For efficient and low-cost operation, Solid Oxide Electrolysis Cell (SOEC) systems require a well-designed heat integration architecture. In this work, SOEC thermal integration and thermal coupling with external heat source are discussed. SOEC systems strongly benefit from such a thermal coupling which can reduce the total electricity consumption by 17 %. A literature review of systems proposing such a thermal coupling is presented. Emphasis is placed on the nature and temperature of the heat sources and on the SOEC operation mode. The choice of an operation mode is influenced by considerations on the available heat input and on the system efficiency, production rate and durability. A focus is placed on the integration of heat storage systems in a SOEC architecture. The operation of SOEC systems must be continuous and stable to avoid temperature gradients and pressure differences. When coupling with a fluctuating heat source, heat storage offers a very interesting solution to match heat production and demand. When integrating with heat storage, SOEC architectures can be divided into three configurations. The first one includes a fluid loop, to which sensible storage systems are well adapted. In the second one, steam is directly generated from the heat input and steam storage systems such as latent storage or accumulators are preferred. Eventually, the third configuration corresponds to the storage of the heat produced in SOFC mode and its use in SOEC mode. Different heat storage systems are proposed in this case and lead to an improvement of 5 to 13 % in the system round-trip efficiency.
S
SunView 深度解读
该SOEC热管理技术对阳光电源储能系统具有重要借鉴价值。文中提出的热耦合架构可降低17%电耗,与PowerTitan储能系统的热管理优化方向一致。三种储能配置方案(显热储存、潜热储存、SOFC/SOEC双向运行)可提升5-13%往返效率,为ST系列PCS的多物理场耦合控制提供设计思路。特别是波动热源匹配技术,可应用于光储充一体化场景,通过iSolarCloud平台实现热电协同优化,提升系统整体效率和设备耐久性。