← 返回
氢能与燃料电池
★ 4.0
阴极循环耐久性增强机制及系统级运行分析:汽车用质子交换膜燃料电池研究
Mechanism insights and system-level operation analysis of cathode recirculation for durability enhancement in automotive PEMFC
| 作者 | Ze Liua · Mingyang Yangb · Xingwang Tangc · Lei Shib · Sichuan Xub · Quan Zhoub |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 401 卷 |
| 技术分类 | 氢能与燃料电池 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | A comprehensive insight into the durability enhancement mechanism by cathode recirculation (CR) for PEMFC. |
语言:
中文摘要
摘要 阴极循环(CR)已成为缓解质子交换膜燃料电池(PEMFC)在低负载条件下加速退化的一种有前景的策略。尽管以往的研究主要集中在CR对外部性能的影响上,但其在高功率自增湿系统中提升耐久性的根本机制及运行特性仍缺乏充分理解。本研究首先通过严格控制的单电池实验,系统地探究了CR增强耐久性的机理。宏观分析表明,CR显著减缓了极化曲线的退化,在0.3 A/cm²时最大衰减降低达58.4%。微观表征揭示,CR主要缓解了电荷转移电阻和扩散电阻的增加,与无循环(NCR)模式相比,电化学活性表面积(ECSA)损失减缓了62.7%,阴极催化剂层(CCL)裂纹扩展速率降低了2.4个百分点。在获得单电池层面的机理认知后,进一步在高功率汽车用自增湿燃料电池系统中开展了系统级验证。结果表明,为维持等效的电压降幅,最优CR运行需随电流密度增加而逐步提高循环泵转速,这一规律由氧气稀释效应与加湿效应之间的竞争关系所主导。此外,CR展现出在维持保护性电压水平的同时降低怠速功率输出的能力,从而减轻了能量管理压力。总体而言,本文提出的框架将单电池尺度的机理理解与系统级优化策略相衔接,推动了高耐久性车用燃料电池的发展。
English Abstract
Abstract Cathode recirculation (CR) has emerged as a promising strategy to mitigate accelerated degradation in proton exchange membrane fuel cells (PEMFCs) under low-load conditions. While previous studies have primarily focused on CR's external performance impacts, the fundamental mechanisms underlying its durability enhancement and operational characteristics in high-power self-humidifying systems remain insufficiently understood. This study firstly systematically investigates CR-enhanced durability mechanisms through rigorously controlled single-cell tests. Macroscopic analyses demonstrate that CR significantly mitigates polarization curve degradation, with maximum attenuation reduction reaching 58.4 % at 0.3 A/cm 2 . Microscopic characterization reveals CR primarily alleviates the increases in both charge transfer and diffusion resistance, slowing electrochemical surface area (ECSA) loss by 62.7 % compared to non-recirculation (NCR) mode and reducing cathode catalyst layer (CCL) crack propagation rate by 2.4 percentage points. Following the mechanistic insights obtained at the single-cell level, system-level validation is conducted in a high-power automotive self-humidifying fuel cell system. The results show that optimal CR operation requires progressively higher pump speeds with increasing current density to maintain equivalent voltage reduction, governed by competing oxygen dilution and humidification effects. Additionally, CR demonstrated the capability to reduce idle power output while maintaining protective voltage levels, resulting in reduced energy management pressure. Overall, the presented framework bridges single-cell mechanistic understanding with system-level optimization strategies, advancing durable automotive fuel cell development.
S
SunView 深度解读
该PEMFC阴极循环增效技术对阳光电源氢能布局具有重要参考价值。研究揭示的氧稀释与增湿平衡机制可应用于燃料电池充电桩系统优化,通过动态调节循环泵速适配不同负载工况,延长电堆寿命62.7%。其怠速功率管理策略可借鉴至ST储能系统的待机能耗优化,结合iSolarCloud平台实现预测性维护。阴极催化层裂纹监测技术与阳光电源功率器件老化诊断算法具有协同创新潜力,可提升氢储耦合系统全生命周期可靠性,支撑交通-能源双碳目标。