← 返回
地下热能储存的研究进展:研究内容、热点与发展趋势
Progress in underground thermal energy storage: research contents, hotspots, and development trends
| 作者 | Renfeng Wei · Yong Liab · Yanfeng Liu |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 401 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Decoded spatiotemporal evolution of UTES research via knowledge graph analysis of 7 705 literatures. |
语言:
中文摘要
摘要 迄今为止,关于地下热能储存(UTES)的综述研究往往较为零散,缺乏对研究热点时空演变特征的系统分析。本研究旨在对全球UTES领域的发展脉络和研究趋势提供一种客观且全面的分析。研究以过去30年发表的7705篇文献作为数据来源,运用知识图谱技术进行文献计量与内容分析,聚焦三个核心问题:研究前沿与技术成熟度、关键瓶颈以及未来发展趋势与成本特征。目的在于克服传统定性综述的局限性,构建一个数据驱动、多维度的分析框架。结果表明,UTES领域经历了萌芽期、稳定增长期和快速扩张期三个发展阶段,预计在2065年前后实现大规模商业化。含水层热能储存(ATES)的研究重点在于热-流-固耦合优化;钻孔式热能储存(BTES)强调相变材料(PCMs)与可再生能源的集成应用;能量桩(EPs)作为连接地下结构与能源系统的关键纽带发挥重要作用;岩体热能储存(RTES)正转向高温材料创新方向发展,其中能量桩(EP)展现出显著更高的研究强度。从成本排序来看,依次为:能量桩(EP)<(钻孔式热能储存,利用废弃矿井类型;含水层热能储存,再利用现有井)<(钻孔式热能储存,无现有井)<(含水层热能储存,无现有井)< 岩体热能储存(RTES)。通过定量分析与预测模型,本研究为UTES领域的技术创新、合作机制建立及政策制定提供了科学依据,同时显著提升了热能储存系统设计的科学严谨性以及工程转化效率。
English Abstract
Abstract Existing reviews on underground thermal energy storage (UTES) are often fragmented and lack analysis of the spatial-temporal evolution of research hotspots. This study aims to provide an objective and comprehensive analysis of the developmental trajectory and research trends in the global UTSES field. This study utilizes 7705 documents published over the past 30 years as its data source to conduct bibliometric and content analysis using knowledge graph techniques. It focuses on three core issues: research frontiers and technology maturity, core bottlenecks, and future trends and cost characteristics. The aim is to overcome the limitations of traditional qualitative reviews and establish a data-driven, multi-dimensional analytical framework. The results indicate that the UTES field has undergone three stages of development: embryonic, stable growth, and rapid expansion, with large-scale commercialization expected by 2065. Aquifer thermal energy storage (ATES) focuses on heat-fluid-solid coupling optimization. Borehole thermal energy storage (BTES) emphasizes the integration of phase-change materials (PCMs) with renewable energy. Energy piles (EPs) serve as a critical key link between underground structures and energy systems. Rock thermal energy storage (RTES) is shifting toward high-temperature material innovations, with EP demonstrating significantly higher research intensity. The cost ranking is as follows: EP < (BTES, abandoned mine type; ATES, with existing well reuse) < (BTES, without existing wells) < (ATES, without existing wells) < RTES. Through quantitative analysis and prediction models, this study provides a scientific basis for UTES technological innovation, collaboration establishment, and policy formulation. Moreover, it significantly enhances the scientific rigor of thermal storage system design and engineering translation efficiency.
S
SunView 深度解读
地下储热技术(UTES)与阳光电源储能系统形成互补协同。ATES/BTES的热-流-固耦合优化可借鉴应用于PowerTitan液冷系统的热管理算法;相变材料(PCM)集成思路可启发ST系列PCS的温控优化设计;能量桩(EP)作为地下结构与能源系统纽带,其高研究强度特性提示可探索光储充一体化场站的地基储热潜力。UTES的成本分级模型为iSolarCloud平台增加全生命周期经济性评估模块提供方法论参考,助力综合能源管理解决方案创新。