← 返回
液化天然气在冷能储存不足条件下辅助液态空气储能系统启动中的新应用研究
A new application study of liquefied natural gas in assisting in the start-up of the liquid air energy storage system without sufficient cold storage energy
| 作者 | Yufei Zhoua · Hanfei Zhang · Shuo Liua · Jin Huang · Xingqi Dinga · Liqiang Duana · Umberto Desideri |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 401 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Propose the conception of the LAES system start-up without sufficient cold storage energy. |
语言:
中文摘要
摘要 液态空气储能(LAES)是一种极具前景的大规模储能技术,其中冷能循环是其关键技术环节。然而,在LAES系统的初始启动阶段,或在长时间停机维护后的重启过程中,系统可能面临冷能储存不足的问题,而现有研究尚未充分解决在此类条件下如何建立冷能循环的难题。基于LAES系统的动态模型,本研究首先探讨了在无冷能储存的情况下,仅依靠空气节流冷却效应实现空气液化的启动过程及其性能表现。随后,提出了一种利用液化天然气(LNG)额外冷能辅助LAES系统在无冷能储存条件下启动的新方案,并建立了相应的评价指标体系,对这一辅助启动过程的性能进行了分析。结果表明,当冷能储存充足时,系统启动后约30秒即可开始生成液态空气;而在冷能储存不足的情况下,需约844秒才能产生液态空气,最大液化率仅为2.71%,导致填充液态空气储罐(LAT)所需时间相比额定充电时长增加了约30倍。通过引入LNG辅助冷能,在最优工况下可在启动后92秒即开始产生液态空气,最大液化率达到41.7%,填充LAT所需时间减少至不使用外部冷能LAES系统的1/15.2。此外,LNG的操作压力越低,空气液化过程越快,总的LNG消耗量也越少。本研究结果为应对各类因素导致的LAES系统冷能储存不足问题提供了可行的应急策略,有助于构建更加稳健的启动流程,提升系统运行的可靠性。
English Abstract
Abstract Liquid air energy storage (LAES) is a highly promising large-scale energy storage technology, with the cold energy cycle being a key part. However, during the initial start-up of an LAES system or its restart after a prolonged maintenance, the system may face a cold storage energy deficiency, and how to establish the cold energy cycle under such conditions has not been adequately addressed in existing studies. Based on a dynamic model of an LAES system, this study first investigates the process and performance of air liquefaction without cold storage energy, relying solely on the throttling cooling effect of air. Subsequently, a novel scheme and evaluation metrics are proposed for using the additional cold energy from liquefied natural gas (LNG) to assist in the start-up of the LAES system without cold storage energy, and the performance of this process is analyzed. The results show that when cold storage energy is sufficient, the liquid air begins to form approximately 30 s after start-up. However, when cold storage energy is deficient, it takes about 844 s to generate liquid air, and the maximum liquid yield is only 2.71 %, leading to around a 30-fold increase in the time required to fill up the liquid air tank (LAT) compared to the rated charging duration. By introducing the LNG, the liquid air can be produced 92 s after start-up under optimal conditions, with a maximum liquid yield of 41.7 %. The time required to fill up the LAT is reduced to 1/15.2 of the required time of the LAES system not using external cold energy. Additionally, the lower the LNG operating pressure, the faster the air liquefaction process, and the less the total LNG consumption. The findings of this study provide a viable contingency strategy for cold storage energy deficiency in LAES systems caused by any possible factors, contributing to the development of robust start-up procedures and enhancing system reliability.
S
SunView 深度解读
该LAES液空储能冷启动技术对阳光电源大规模储能系统具有重要借鉴价值。研究揭示的冷储能不足导致启动时间延长30倍的问题,与我司PowerTitan等大型储能系统面临的长期停机后重启挑战高度相关。LNG辅助冷启动方案将启动时间缩短至1/15.2,启发我司ST系列PCS可开发类似的辅助预热/预冷策略,通过外部能源辅助建立最佳工作温度,优化电化学储能系统的温控管理。该动态建模方法可应用于iSolarCloud平台的预测性维护功能,提前识别储能系统热管理缺陷,制定应急启动预案,提升系统可靠性与快速响应能力,特别适用于极端气候条件下的储能电站运维。