← 返回
全球145个区域100%可再生能源系统中跨年度储能与发电过剩容量的技术经济分析
Techno-economic analysis of inter-annual energy storage and overcapacity in 100 % renewable energy systems for 145 regions globally
| 作者 | Mohammad Hasibul Hasan · Dominik Keiner · Christian Breyer |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 401 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | First global analysis of inter-annual storage for 100% renewable energy systems. |
语言:
中文摘要
摘要 本研究针对全球划分为145个区域的地区,对100%可再生能源系统中的跨年度储能需求进行了全面分析。该研究首次在全球范围内评估了太阳能和风能资源在多个部门(包括电力、热力、交通和海水淡化)的应用情况。跨年度储能选项包括氢气、甲烷和液体燃料。基于美国国家航空航天局(NASA)1984年至2005年的高分辨率气象数据,分析了不同区域的储能需求、可再生电力发电的过剩容量以及相关的经济影响。结果表明,各区域在储能需求方面存在显著差异,其中氢气再发电系统的储能需求在全球不同区域之间的变化范围最广。本文提出了两种情景的成本分析,分别以最小化弃电或最小化成本为目标。研究发现,最优储能解决方案高度依赖于具体区域和能源需求特征,挑战了能源系统规划中常采用的“一刀切”方法。在弃电优化情景下,风能和太阳能光伏发电需增加1.4%的过剩容量,并配备显著的储能能力,分别为417.4 TWh H₂,LHV、0.8 TWh CH₄,LHV 和4.2 TWh th,LHV 的氢气、甲烷和液体燃料储能,这将使2050年100%可再生能源系统的基础成本平均加权增加103.1%。相比之下,成本优化情景需要5.0%的发电过剩容量,但无需额外的跨年度储能,仅使成本增加3.3%。这一核心发现表明,相较于主要依赖建设大规模储能设施,提高发电过剩容量是一种更具影响力且更经济可行的路径。这些发现为致力于提升100%可再生能源系统韧性的政策制定者和系统规划人员提供了关键参考依据。
English Abstract
Abstract In this study, a comprehensive analysis of inter-annual storage requirements for 100% renewable energy systems is presented for the world, structured in 145 regions. This research provides the first global assessment of solar and wind resources on multiple sectors, including power, heat, transport, and desalination. Inter-annual storage options include hydrogen, methane, and liquid fuels. Using high-resolution weather data from NASA from 1984 to 2005, storage requirements, overcapacity for renewable electricity generation, and economic implications across different regions are analysed. The results reveal substantial regional variations in storage requirements, with hydrogen re-electrification systems showing the widest range of storage needs across different global regions. Cost analyses for two scenarios are presented to minimise either curtailment or cost. The study reveals that optimal storage solutions are highly region and demand-specific, challenging the one-size-fits-all approach often assumed in energy system planning. The curtailment-optimised scenario requires 1.4% overcapacity in wind and solar photovoltaics electricity generation, complemented by significant storage capacity of 417.4 TWh H2,LHV , 0.8 TWh CH4,LHV , and 4.2 TWh th,LHV of hydrogen, methane, and liquid fuels, respectively, adding an on demand-weighted average of 103.1% to the baseline cost of a 100% renewable energy system in 2050. In contrast, the cost-optimised scenario requires 5.0% generation overcapacity with no additional inter-annual storage, increasing costs by 3.3%. This core finding reveals that increasing the overcapacity is a significantly more impactful and economically viable pathway than a primary reliance on building large-scale storage. These findings provide crucial insights for policymakers and system planners working towards the resilience of 100% renewable energy systems.
S
SunView 深度解读
该研究揭示跨年度储能在全球100%可再生能源系统中的关键作用,对阳光电源ST系列储能变流器和PowerTitan系统具有重要战略价值。研究发现提高光伏风电装机过容量(5%)比大规模储能更经济,这验证了阳光电源SG系列逆变器与储能系统协同优化的技术路线。氢储能再电气化需求(417.4 TWh)为公司开发长时储能PCS和能量管理系统指明方向。区域差异化储能需求支持iSolarCloud平台基于气象数据的智能配置策略,助力全球化储能解决方案部署。