← 返回
适用于具有显著电压平台区的LiFePO₄锂离子电池的鲁棒荷电状态估计
Robust state-of-charge estimation for LiFePO₄ Lithium-ion batteries with pronounced voltage plateau regions
| 作者 | Kaixuan Zhang · Cheng Chena · Lixin Era · Weixiang Shenb · Rui Xiong |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 401 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Adaptive robust extended Kalman filter is proposed to estimate the state of charge (SOC) for LiFePO4 batteries. |
语言:
中文摘要
准确的荷电状态(SOC)估计对于电动汽车和储能系统的安全高效运行至关重要。针对磷酸铁锂(LiFePO₄或LFP)电池在电压平台区可观测性降低和对噪声敏感的问题,本研究提出了一种具有双误差协同机制的自适应鲁棒扩展卡尔曼滤波器(AREKF),用于SOC估计。首先,基于辨识得到的开路电压(OCV)和估计的SOC构建收敛条件,控制SOC校正的激活与关闭;进一步地,通过将不可测量的SOC误差条件转化为基于状态预测与反馈误差的可测电压条件,扩展了存在SOC误差时的校正窗口。其次,通过比较计算得到的电压残差协方差与理论值之间的偏差,自适应更新AREKF的误差协方差,从而加快收敛速度。同时,采用滑动窗口平均法以及对误差协方差设置上界以增强算法的鲁棒性。最后,实验验证表明,所提出的方法在动态条件下能有效抑制测量噪声,在SOC估计中表现出更强的鲁棒性,尤其是在电压平台区域。在多温度、多噪声及干扰测试条件下,稳态估计误差保持在±2%以内,证实了该方法在LFP电池SOC估计中的可靠性。
English Abstract
Abstract Accurate state of charge (SOC) estimation is critical for the safe and efficient operation of electric vehicles and energy storage systems. To address the challenges of reduced observability and noise sensitivity in voltage plateau regions of lithium iron phosphate (LiFePO 4 or LFP) batteries, this study proposes an adaptive robust extended Kalman filter (AREKF) with a dual-error collaborative mechanism for SOC estimation. First, the convergence condition, based on the identified open-circuit voltage (OCV) and estimated SOC, controls the activation and deactivation of SOC correction. Furthermore, by transforming the unmeasurable SOC condition into a measurable voltage condition based on state prediction and feedback errors, the correction window is expanded in the presence of SOC errors. Next, the error covariance of AREKF is adaptively updated by comparing the deviation between the calculated and theoretical voltage residual covariance, accelerating the convergence speed. Meanwhile, sliding window averaging and upper bounds on the error covariance are employed to enhance robustness. Finally, experimental validation demonstrates that the proposed method effectively suppresses measurement noise under dynamic conditions, exhibiting enhanced robustness in SOC estimation, particularly in the voltage plateau regions. Under multi-temperature, multi-noise, and disturbance testing, the steady-state estimation error remains within ±2 %, confirming the reliability of the proposed method for SOC estimation of LFP batteries.
S
SunView 深度解读
该LFP电池SOC估算技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要应用价值。针对磷酸铁锂电池平台区可观测性弱的难题,所提自适应鲁棒EKF算法可直接集成至BMS与PCS协同控制架构中,提升储能系统在宽温度范围(-20~60℃)及高噪声工况下的SOC估算精度(±2%),优化充放电策略与SOH预测。该双误差协同机制可与阳光电源iSolarCloud平台的预测性维护算法结合,增强电池全生命周期管理能力,降低过充过放风险,特别适用于调频调峰等动态应用场景,提升储能系统安全性与经济性。