← 返回
储能系统技术 储能系统 ★ 5.0

具有优先级和机会约束的风力发电场实时优化

Real time optimization in wind farms with priorities and chance constraints

作者 Samuel Martínez-Gutiérre · Alejandro Merin · Daniel Sarabi
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 401 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Assigning setpoints to a set of wind farms ensuring the priority of some objectives over others.
语言:

中文摘要

本文聚焦于并网型风力发电场的高效管理,旨在根据运行和经济准则优化发电量,同时满足短期运行约束和长期发电目标。为此,提出了一种基于稳态模型的确定性实时优化(RTO)模型,并以每小时为周期进行求解。该模型通过采用自回归积分滑动平均(ARIMA)模型预测短期内(一小时)的平均风速,从而消除主要的不确定性来源,同时引入简单的机会约束来刻画风电出力在长期中的波动特性。这些机会约束基于风电场可发电功率的逆概率分布构建。所提出的问题包含多个具有不同重要程度的目标,因此对比了两种求解多目标问题的方法:加权求和法与字典序法。本文表明,尽管加权求和法被广泛使用,但由于其无法保证各目标之间相对重要性的体现,因而不适用于本问题的建模结构;相比之下,字典序法能够严格按照目标的重要程度依次满足各个目标。所提出的优化模型已应用于包含11个风电场的案例研究中,并评估了多种不同场景。结果表明,该模型在实现长期发电目标方面优于其他替代方案。此外,研究还证明,当长期发电目标施加于风电场群组而非单个风电场时,管理方案的效率更高。

English Abstract

Abstract The article focuses on the efficient management of grid-connected wind farms, with the objective of optimizing production based on operational and economic criteria, while respecting short-term operational constraints and long-term energy production objectives. To achieve this, a deterministic Real Time Optimization (RTO) formulation based on stationary models is proposed and run hourly. This formulation aims to eliminate significant sources of uncertainty by using AutoRegressive Integrated Moving Average (ARIMA) models to predict the average wind speed for the short-term (one hour), while employing simple chance constraints to account for long-term variability in wind power production. These constraints are based on the inverse probability distribution of the producible power of the wind farms. The proposed problem presents multiple objectives with different levels of importance, leading to the comparison of two different methods for solving multi-objective problems: the weighted sum and the lexicographic method. This paper demonstrates that, although the weighted sum is a widely used method, it is unsuitable for the proposed formulation because it may not respect the relative importance of the objectives. In contrast, the lexicographic method ensures that the objectives are satisfied according to their importance. The proposed formulation has been applied to a case study involving 11 wind farms, evaluating different scenarios. It is shown that the proposed formulation outperforms other alternatives in meeting long-term energy production objectives. Additionally, it is demonstrated that the management solution is more efficient when long-term energy production objectives are applied to groups of wind farms rather than individual wind farms.
S

SunView 深度解读

该风电场实时优化技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要借鉴价值。论文提出的ARIMA短期预测结合概率约束的多目标优化方法,可应用于风光储混合电站的能量管理系统。词典序优化方法确保目标优先级,适合集成到iSolarCloud平台的智能调度算法中,优化储能系统充放电策略,提升新能源电站整体经济性和并网友好性,支撑GFM构网型控制技术在风电场景的应用拓展。