← 返回
储能系统技术 储能系统 ★ 5.0

基于终端能量水平价值函数近似的储能系统在可再生能源中的端部效应缓解方法

End-effect mitigation in renewable energy systems with energy storage using value function approximation of terminal energy level

作者 Dongho Han · Seongmin Heo
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 401 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Proposes a reinforcement learning-based method to mitigate ESS end-effect.
语言:

中文摘要

摘要 随着可再生能源在电力系统中渗透率的不断提高,其固有的不确定性和间歇性给系统运行带来了诸多挑战。特别是端部效应问题,仍然是实现真实长期调度的关键障碍,表现为储能系统(ESS)在规划周期结束时趋于完全放电。为解决这一问题,本文提出了一种新的储能系统终端能量估值方法,该方法嵌入于两阶段随机规划(2SSP)框架中,并结合了强化学习(RL)与价值函数近似技术。通过将系统运行建模为马尔可夫决策过程,我们的方法利用值迭代算法对储能系统中终端能量水平的价值进行迭代更新。我们首先采用线性价值函数近似器,随后进一步使用基于神经网络的近似器以提升性能。对比实验表明,所提出的基于强化学习的2SSP方法显著提高了长期收益,有效缓解了端部效应,并在性能上优于现有的固定终端约束、滚动时域框架以及静态终端能量估值等方法。

English Abstract

Abstract The growing integration of renewable energy sources into power systems introduces operational challenges due to their inherent uncertainty and intermittency. In particular, the end-effect remains a critical barrier to realistic long-term scheduling, where energy storage system (ESS) tends to be completely discharged near the end of the planning horizon. To address this, we propose a novel terminal energy valuation method for ESSs within a two-stage stochastic programming (2SSP) framework, integrating reinforcement learning (RL) with value function approximation. By formulating system operations as a Markov decision process, our method iteratively updates the value of the terminal energy level in ESS using the value iteration algorithm. We first employ a linear value function approximator and then enhance performance using a neural network-based approximator. Comparative experiments demonstrate that our RL-based 2SSP significantly improves long-term profits, effectively mitigates the end-effect, and outperforms existing approaches such as fixed terminal constraints, rolling horizon frameworks, and static terminal energy valuations.
S

SunView 深度解读

该终端能量估值技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要应用价值。通过强化学习优化储能系统长周期调度的末端效应问题,可显著提升储能经济性。建议将该价值函数逼近方法集成至iSolarCloud平台的能量管理系统中,结合两阶段随机规划框架,优化ST系列PCS的充放电策略,避免规划末期过度放电,提高储能全生命周期收益。该技术可与现有GFM控制策略协同,增强大规模储能电站的智能调度能力。