← 返回
储能系统技术 储能系统 ★ 4.0

浸没式冷却实现过充电池热失控抑制:机制与评估指标

Immersion cooling enabled thermal runaway prevention in overcharged batteries: Mechanisms and metrics

作者 Jiaxing Lia · Jingrong Oua · Shaohong Zenga · Long Chena · Yajun Qiaob · Zijian Tanb · Yubai Lic · Weixiong Wua
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 401 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★ 4.0 / 5.0
关键词 Immersion cooling suppresses battery thermal runaway at 1/3C overcharge rate.
语言:

中文摘要

摘要 浸没式冷却(IC)是一种有效的电池热管理策略。然而,在过充条件下,针对大容量磷酸铁锂(LFP)电池,其化学相容性以及对热失控(TR)抑制效果的定量影响仍缺乏充分的实验验证。本研究设计了三种冷却模式:完全浸没(FI)、非浸没安全阀(NISV)和完全非浸没(NI)。实验结果表明,FI模式通过限制电池最高温度和温升速率,显著抑制了热失控的发生。特别是在1/3充电倍率(C)条件下,FI模式可完全避免热失控,最高温度被控制在110.45 °C,最低温升速率为0.15 °C/s。此外,在1/3C过充条件下,FI模式在内部短路(ISC)发生前将电池释放容量提升了35%–40%,同时抑制了电压的上升。然而,随着过充倍率的提高,这种提升容量的效果逐渐减弱。热分布分析表明,FI模式具有更优异的散热性能,相较于NISV模式,其浸没液体的温度及温升速率均显著更低。采用可量化的安全评估指标进行危害性评价,FI、NISV和NI模式的危险评分分别为0.206、0.342和0.955,表明浸没式冷却技术能显著降低电池整体危害性,尽管对热失控风险的缓解作用相对有限。此外,所提出的基于烃类的浸没式冷却介质表现出与电池组件(如电极、电解液等)良好的化学相容性。本研究凸显了浸没式冷却技术在LFP电池过充工况下的安全优势,并为该技术在电动汽车和电网级储能系统中的应用提供了有价值的指导依据。

English Abstract

Abstract Immersion cooling (IC) is an effective thermal management strategy for batteries. However, experimentally validation of its chemical compatibility and quantitative impacts on suppressing thermal runaway (TR) in large-capacity lithium‑iron-phosphate (LFP) batteries under overcharge conditions remains limited. In this study, we designed three cooling modes: fully immersed (FI), non-immersed safety valve (NISV), and non-immersed (NI). The experimental results indicate that the FI mode significantly suppresses TR by limiting both the maximum battery temperature and temperature rise rate. In particular, TR can be completely prevented at a 1/3 charging rate (C), with the maximum temperature limited to 110.45 °C and a minimal temperature rise rate of 0.15 °C/s. Furthermore, the FI mode enhances the battery release capacity by 35 %–40 % before the occurrence of internal short circuits (ISC) under the 1/3C overcharge condition, while limiting the voltage increase. However, this capacity-enhancement effect diminishes with an increase in the overcharge rates. Thermal profiling indicates that the FI mode exhibits superior heat dissipation, with significantly lower immersion liquid temperature and temperature rise rate when compared with the NISV mode. Safety evaluation with adoptable metrics further presents hazard scores of 0.206 for FI, 0.342 for NISV, and 0.955 for NI, indicating that IC technology significantly mitigates battery hazards, albeit with a more modest impact on TR risk. Additionally, the proposed hydrocarbon-based IC demonstrated promising chemical compatibility with the battery components (e.g., electrodes, electrolytes). This study highlights the safety benefits of IC technology for LFP batteries during overcharge and presents valuable guidelines for applications in electric vehicles and grid-scale energy storage systems.
S

SunView 深度解读

该浸没式冷却技术对阳光电源储能系统具有重要应用价值。研究验证了液冷技术在磷酸铁锂电池过充场景下可将温升速率降至0.15°C/s,完全抑制热失控,危险评分降低78%。可直接应用于PowerTitan等大型储能系统的热管理优化,结合ST系列PCS的过充保护策略,提升电网侧储能安全等级。该量化指标体系为iSolarCloud平台的预测性维护算法提供温度阈值参考,同时为充电站大功率电池包的液冷设计提供实验依据,支撑阳光电源构建更安全的储能生态。