← 返回
一种用于大型风电场动态数据蒸馏与尾流效应校正的非平稳Transformer功率预测模型
A Non-stationary Transformer model for power forecasting with dynamic data distillation and wake effect correction suitable for large wind farms
| 作者 | Guopeng Zhu · Weiqing Ji · Lifeng Cheng · Ling Xiang · Aijun Hu |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 324 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A novel method is proposed for power forecasting in large-scale [wind farm](https://www.sciencedirect.com/topics/engineering/wind-turbine "Learn more about wind farm from ScienceDirect's AI-generated Topic Pages"). |
语言:
中文摘要
可靠的高精度短期功率预测对于保障电力系统安全和提高风能利用率至关重要。然而,风的随机性和非平稳性特征给大规模风电场(WF)中功率预测精度与效率的提升带来了显著挑战。以往的研究通常未能自适应地增强原始数据的特征,并且忽略了风力涡轮机(WTs)之间尾流效应的影响,从而导致预测精度下降。本文提出了一种基于非平稳Transformer模型的新型功率预测方法,该方法结合了动态数据蒸馏与尾流效应校正,以提升预测性能。在所提出的方法中,设计了一种非平稳Transformer模型用于从监控与数据采集(SCADA)数据中提取特征,显著增强了对非平稳SCADA数据的特征提取能力。同时提出了一种动态数据蒸馏技术,用以去除冗余数据并提升数据集质量;并引入尾流效应模型对预测结果进行校正,减少误差来源。动态数据蒸馏解决了数据预处理过程中数据特征丢失的问题,而尾流校正则降低了由风力涡轮机间尾流效应引起的预测误差。本文采用中国西北和东北地区风电场的SCADA数据集进行实验,预测结果验证了所提方法的有效性与优越性。消融实验进一步证实,动态数据蒸馏与尾流效应校正确实能够有效提升风电功率预测的准确性。
English Abstract
Abstract Reliable, high-precision short-term power forecasting is crucial for ensuring power safety and improving wind energy utilization. However, the randomness and non-stationary features of wind present significant challenges in enhancing the precision and efficiency of power forecasts in large-scale wind farm (WF). Previous research often fails to adaptively enhance the original data’s features and neglects the impact of wake effects between wind turbines (WTs), leading to reduced forecasting accuracy. In this paper, a novel method is proposed for power forecasting based on non-stationary Transformer model, which also incorporates dynamic data distillation and wake effect correction to improve forecasting performance. In this proposed method, a non-stationary Transformer model is proposed for extracting features from supervisory control and data acquisition (SCADA) data, which significantly improved the feature extraction capability for non-stationary SCADA data. A dynamic data distillation technique is proposed to remove redundant data and enhance dataset quality, and the wake effect is developed to correct forecasting results and reducing error sources. Dynamic data distillation addresses the loss of data features caused by dataset preprocessing, while wake correction reduces the forecasting errors caused by the wake effect between WTs. The SCADA datasets are used from northwest and northeast China WFs, and the forecasting results demonstrate the effectiveness and superiority of the proposed method. Ablation experiments further confirm that dynamic data distillation and wake effect effectively enhance wind power forecasting accuracy.
S
SunView 深度解读
该非平稳Transformer风电功率预测技术对阳光电源储能系统具有重要应用价值。动态数据蒸馏和尾流效应校正方法可直接应用于ST系列PCS的能量管理系统,提升大规模风储耦合场景下的功率预测精度。非平稳特征提取能力可集成至iSolarCloud平台的预测性维护模块,优化PowerTitan储能系统的充放电策略。尾流效应校正思路对风光储一体化项目的多机协同控制具有借鉴意义,可提升GFM控制模式下的电网支撑能力和系统经济性。