← 返回
电动汽车驱动
★ 4.0
一种用于极端热条件下非均匀加热的新型机电制动电机热管理系统开发
Development of a novel electro-mechanical brake motor thermal management system for nonuniform heating under extreme thermal conditions
| 作者 | Piljun Parka · Hongseok Choib · Sangwook Leeb · Sunoh Jeong · Hoseong Leeb |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 325 卷 |
| 技术分类 | 电动汽车驱动 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | Study investigated cooling performance of EMB motor under extreme conditions. |
语言:
中文摘要
摘要 当前汽车制动系统行业面临的一个挑战是开发能够克服摩擦热对电机性能影响的机电制动器。然而,以往研究电机冷却性能的工作大多在环境温度低于80°C的条件下进行,并假设线圈发热是均匀的,这些假设对于机电制动(EMB)系统并不成立。本研究通过实验考虑了极端环境温度条件以及线圈非均匀发热的情况,并基于实验结果通过仿真提出了一种可承受极端热条件的混合冷却系统。该混合冷却方法结合了散热片、隔热材料和相变材料,被证明最为有效,可使线圈最高温度降低23 K。此外,在最严苛的单相电机控制策略下,混合冷却仍能将最高温度控制在137.1°C,比基准方案低22.8 K。当测试制动衬片摩擦系数在0.3至0.5范围内时,系统在最极端的0.31工况下运行温度最高仅为139.9°C,仍低于目标温度。本研究表明,有效的机电制动系统热管理能够实现系统的耐久性和可靠性,从而保障驾驶安全。
English Abstract
Abstract A challenge currently faced by automotive brake systems industry is the development of electromechanical brakes that need to overcome the impact of frictional heat on the motor performance. However, previous studies that examined motor cooling performance have been conducted in surrounding air temperatures below 80°C while considering uniform coil heat generation. These assumptions are not valid for EMB systems. This study conducted experiments that considered extreme surrounding temperature conditions and nonuniform coil heat generation. Based on the results of these experiments, a hybrid cooling system that can withstand extreme thermal conditions is proposed through simulation. The Hybrid cooling method that uses heat sinks, insulation, and phase change materials is the most effective with a reduction in the maximum coil temperature of 23 K. Moreover, Hybrid cooling attained maximum temperature of 137.1°C even in the most extreme 1-phase motor control strategy, which is 22.8 K lower than the Baseline. When tested for pad friction coefficient ranges from 0.3 to 0.5, the system operated below the target temperature reaching up to 139.9°C under the most extreme 0.31 conditions. This study shows that effective thermal management of electromechanical brake systems that ensures system durability and reliability of driver safety is achievable.
S
SunView 深度解读
该电机极端热管理技术对阳光电源电动汽车驱动系统具有重要参考价值。研究中的相变材料+散热器+隔热层混合冷却方案,可应用于我司OBC车载充电机和电机驱动器的热管理优化,特别是在高温环境下的功率器件保护。非均匀发热建模方法可借鉴至SiC/GaN功率模块的热仿真,提升充电桩和储能PCS在极端工况下的可靠性。该混合冷却策略降温23K的效果,为ST系列储能变流器的紧凑化设计提供新思路,有助于提高功率密度同时确保系统安全性。