← 返回
储能系统技术 储能系统 ★ 5.0

基于甲醇分解反应的绝热-等温压缩空气储能耦合系统在热、电、氢联产中的能效、㶲、经济与环境分析与优化

Energy, exergy, economic and environmental analysis and optimization of an adiabatic-isothermal compressed air energy storage coupled with methanol decomposition reaction for combined heat, power and hydrogen generation system

语言:

中文摘要

压缩空气储能技术是实现可再生能源并网的关键技术之一。高效利用压缩过程中产生的热量是提升压缩空气储能系统性能的重要途径。因此,本文提出一种基于甲醇分解反应的绝热-等温压缩空气储能系统,用于实现热、电、氢联产。在储能阶段,第一级采用绝热压缩,所产生的压缩热作为甲醇分解反应的热源;分解生成的氢气和一氧化碳被分离,其中氢气储存于加氢站,一氧化碳则储存在气体储罐中以供后续使用;第二级采用等温压缩,以减少压缩热的产生。在释能阶段,由分解反应产生的一氧化碳燃烧用以加热空气。该系统通过减少压缩热的产生并充分利用已有的压缩热,结合能量梯级利用原理,并集成制氢功能,从而提升系统整体性能。通过建立系统各组件的数学模型,研究了系统在关键参数变化下能量、㶲、经济性和环境性能(即4E性能)的变化规律。结果表明,在设计工况下,所提出的系统往返效率达到87.04%,㶲效率为74.05%,投资回收期为7.75年,平准化度电成本为137.28美元/兆瓦时,二氧化碳排放指数为155.93千克/兆瓦时。值得注意的是,燃烧室和甲醇分解反应器中的㶲损失显著,分别占总㶲损失的27.58%和18.06%。敏感性分析结果表明,空气与甲醇比例、液态活塞循环周期、压气机压力比及其效率是影响系统性能的关键参数。研究发现,系统的热力学、经济性和环境性能无法同时达到最优。因此,本文在六种不同的液态活塞循环周期下对系统进行了优化。当液态活塞循环周期为1200秒时,系统的最优运行点对应的㶲效率、平准化度电成本和二氧化碳排放指数分别为73.04%、135.74美元/兆瓦时和150.20千克/兆瓦时。上述研究成果为所提出系统的工程应用提供了有价值的理论依据。

English Abstract

Abstract Compressed air energy storage technology is one of the key technologies for integrating renewable energy generation into the grid. Efficient utilization of compression heat is an important means to enhance the performance of compressed air energy storage systems. Therefore, this paper proposes an adiabatic-isothermal compressed air energy storage coupled with methanol decomposition reaction for combined heat, power and hydrogen generation system. During energy storage, the first stage employs adiabatic compression, where the generated compression heat provides a heat source for methanol decomposition reaction. The produced hydrogen and carbon monoxide are separated, with hydrogen stored in hydrogen refueling stations and carbon monoxide in gas storage tanks for future use. The second stage uses isothermal compression to reduce the generation of compression heat. During energy release, the carbon monoxide produced from the decomposition reaction combusts to reheat the air. This system reduces the generation of compression heat while fully utilizing the compression heat, improving system performance through the principle of energy cascading and incorporating hydrogen production functionality. By developing mathematical models for each component of the proposed system, the variations in the system’s 4E (Energy, Exergy, Economic, Environmental) performances with key parameter changes are investigated. The results show that under design conditions, the proposed system achieves a round-trip efficiency of 87.04 %, an exergy efficiency of 74.05 %, an investment payback period of 7.75 years, a levelized cost of energy of 137.28 $/MWh, and a carbon dioxide emission index of 155.93 kg/MWh. Notably, the exergy losses in the combustion chamber and the methanol decomposition reactor are significant, accounting for 27.58 % and 18.06 % of the total exergy losses, respectively. The results of sensitivity analysis indicate that air-to-methanol ratio, liquid piston cycle duration, compressor pressure ratio and efficiency are the key parameters affecting the performance of the system. The simultaneous optimization of a system’s thermal, economic, and environmental performance is not achievable. Therefore, in this paper, the system is optimised at six different liquid piston cycle durations. When the liquid piston cycle duration is 1200 s, the optimal operating point exergy efficiency, levelized cost of energy and carbon dioxide emission index of the system are 73.04 %, 135.74 $/MWh and 150.20 kg/MWh, respectively. These findings provide valuable insights for the engineering application of the proposed system.
S

SunView 深度解读

该绝热-等温压缩空气储能技术对阳光电源ST系列储能系统具有重要参考价值。系统87.04%的往返效率和热电氢联产模式,可启发PowerTitan储能方案的能量梯级利用优化。压缩热回收与甲醇制氢的耦合思路,适用于阳光电源充电站与储能系统的集成创新,通过PCS控制策略优化实现多能互补。文中燃烧室和反应器的火用损失分析,可指导ST系列功率变换系统的热管理设计,结合iSolarCloud平台进行关键参数的智能优化与预测性维护,提升综合经济性。