← 返回
储能系统技术 储能系统 ★ 5.0

电化学介导的二氧化碳捕集与压缩集成系统的理论与实验验证

Theoretical and experimental validation of an electrochemical-mediated integrated system for CO2 capture and compression

语言:

中文摘要

摘要 二氧化碳的捕集与压缩过程是碳捕集与封存(CCS)过程中能耗最高的环节,现有研究通常将这两个阶段独立处理。将CO2捕集与压缩过程进行集成,是有效减小压缩机尺寸并降低CCS全过程总能耗的一种可行途径。近年来发展的电化学介导胺再生(EMAR)技术,由于其电化学反应与铜-胺络合反应提供的强驱动力,为实现这一集成提供了有前景的技术路径。本文提出了一种电化学介导的CO2捕集与压缩集成系统,并从理论和实验两方面验证了其在加压条件下的运行性能。建立了热力学模型以分析系统的能量性能,同时设计了 bench-scale 流动池系统以验证其在加压条件下输出CO2的能力。热力学建模结果表明,集成系统的能耗显著受到不同操作路径的影响。在较低压力下,CO2气泡更易形成,系统倾向于以三步模式运行;而在较高压力下,系统则趋向于四步模式运行。此外,通过在适当压力下释放CO2,可以进一步降低CCS过程的总能耗。bench-scale 流动系统的实验结果表明,当解吸压力提高40%时,驱动电压和释放的CO2量几乎保持不变,从而证明了该系统具备释放加压CO2的能力。综上所述,研究结果验证了电化学介导集成系统的可行性,为实现全球碳中和目标提供了一条创新的低能耗技术路径。

English Abstract

Abstract The carbon dioxide capture and compression processes represent the most energy-intensive stages in the carbon capture and storage (CCS) process, which are usually treated independently in the existing studies. Integrating the CO 2 capture and compression stages is a possible way to effectively reduce the compressor size and the total energy consumption of the CCS process. The recent development of electrochemically mediated amine regeneration (EMAR) technology provides a promising approach for this integration due to the strong driving force of the electrochemical reaction and the copper–amine complexation reaction. In this paper, we propose an electrochemical-mediated integrated system for CO 2 capture and compression and verify its pressurized operation performance both theoretically and experimentally. A thermodynamic model was developed to analyze the energy performance of the system and a bench-scale flow-cell system was designed to verify its ability to output CO 2 under pressurized conditions. The thermodynamic modelling results indicated that the energy consumption of the integrated system is significantly affected by different operational paths. At lower pressures, CO 2 bubbles are easier to form and the system tends to operate in 3-steps, higher pressures lead the system to function in 4-steps. Furthermore, the total energy consumption of the CCS process can be reduced by releasing CO 2 at a suitable pressure. The results of the bench-scale flow system indicated that a 40% increase in release pressure resulted in a nearly constant driving voltage and released CO 2 amount, thereby demonstrating its capacity to release pressurized CO 2 . In conclusion, the results demonstrate the feasibility of the electrochemical-mediated integrated system, which provide an innovative low-energy pathway to support the achievement of global carbon neutrality.
S

SunView 深度解读

该电化学介导CO2捕集压缩集成技术为阳光电源储能系统提供重要启示。其能量优化路径设计理念可应用于ST系列PCS的多级能量管理策略,通过压力-电压协同控制降低系统能耗。电化学反应的强驱动力特性与PowerTitan储能系统的功率调节技术存在协同潜力,可优化充放电过程的能量转换效率。该集成化设计思路对阳光电源开发工业级储能与碳捕集耦合解决方案具有创新参考价值,支撑零碳园区等应用场景的系统级能效提升。