← 返回
氢能与燃料电池 ★ 4.0

结合氨分解、质子交换膜燃料电池与微型燃气轮机的高效氨燃料混合发电系统:热力学模型与性能优化

High-efficiency ammonia-fueled hybrid power generation system combining ammonia decomposition, proton exchange membrane fuel cell and micro gas turbine: A thermodynamic model and performance optimization

语言:

中文摘要

摘要 作为一种具有液化储存和运输优势的无碳氢(H₂)载体,氨(NH₃)被视为用于氢气生产和发电的一种有竞争力的清洁能源载体。本文设计了一种新型以氨为燃料的混合发电系统,该系统将氨分解反应器(ADR)、质子交换膜燃料电池(PEMFC)和微型燃气轮机(MGT)相结合,并采用热化学余热回收技术用于ADR。建立了系统级的热力学模型,以评估不同优化策略下的系统性能。模型计算结果表明,将氨分解温度从500 °C降低至350 °C,可使能量效率从33.5%提升至43.2%,因此提出了两种改进的集成策略。将部分氨与PEMFC阳极排出的尾气混合后作为MGT的燃料,可以减少对氨分解的需求,并更有效地利用MGT产生的余热。将ADR与MGT燃烧室集成,可降低排气温度以及在使用高温氨分解催化剂时的效率损失。当氨分解温度分别为500 °C和350 °C时,这两种策略均可将系统能量效率分别提高至约40%和44%,并展现出更好的灵活性,能够适应氨分解温度的变化。

English Abstract

Abstract As a carbon-free hydrogen (H 2 ) carrier with the advantage of liquefaction storage and transportation, ammonia (NH 3 ) is regarded as a competitive clean energy carrier for H 2 production and power generation. This work designs a novel NH 3 -fueled hybrid power generation system, which combines ammonia decomposition reactor (ADR), proton exchange membrane fuel cell (PEMFC) and micro gas turbine (MGT) together with thermochemical recuperation for ADR. A system-level thermodynamic model has been developed to evaluate system performance with different optimization strategies. The model calculation reveals that the NH 3 decomposition temperature drop from 500 °C to 350 °C can increase the energy efficiency from 33.5 % to 43.2 %, and two improved integration strategies have therefore been proposed. Mixing a part of NH 3 with the exhaust gas from PEMFC anode to fuel MGT can reduce the NH 3 decomposition demand and makes better use of waste heat from MGT. Integrating ADR with MGT combustor can lower the exhaust gas temperature and the efficiency loss when using high temperature NH 3 decomposition catalyst. Both strategies can improve the system energy efficiency, to about 40 % and 44 % when NH 3 decomposition temperature is 500 °C and 350 °C, respectively, and demonstrate better flexibility in adapting to changes in NH 3 decomposition temperature.
S

SunView 深度解读

该氨燃料混合发电系统对阳光电源氢能储能方向具有前瞻价值。其PEMFC与微燃机耦合架构可借鉴至ST储能系统的冷热电三联供场景,通过热化学回收提升能效至44%的思路,可启发PowerTitan储能电站集成燃料电池的热管理优化。氨作为零碳储氢载体的液化运输优势,契合大规模储能调峰需求。系统级热力学建模方法可应用于iSolarCloud平台的多能互补仿真,为氢储能与光储充一体化站的协同控制策略提供技术储备,推动绿氨制氢-燃料电池-储能系统的全链条解决方案开发。