← 返回
氢能与燃料电池
★ 4.0
基于半经验模型驱动协同仿真下集成式固体氧化物燃料电池冷热电联供系统的多目标优化与后验多准则决策
Multi-objective optimization and posteriori multi-criteria decision making on an integrative solid oxide fuel cell cooling, heating and power system with semi-empirical model-driven co-simulation
| 作者 | Bin Gao · Yuekuan Zhou |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 325 卷 |
| 技术分类 | 氢能与燃料电池 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | Solid oxide fuel cell for cooling heating and power supply in buildings. |
语言:
中文摘要
在绿色建筑中,利用副产水电解制氢的集成式固体氧化物燃料电池冷热电联供系统可推动碳中和转型。然而,关于冷热电联供系统设备容量配置的基本机理及其对系统技术经济性的影响尚未明确,尤其是在考虑相关设备动态退化特性和效率变化的情况下。本研究建立了基于MATLAB-TRNSYS协同仿真的多软件优化平台,用于开展参数化容量配置分析,在建模复杂性与计算效率之间实现了良好平衡。构建了一个自给型冷热电联供系统模型,并集成了固体氧化物燃料电池的半经验代理模型,以高效地与其他电站辅助设备类型进行交互。通过各组件(电池、电解槽和固体氧化物燃料电池)设备尺寸的参数化分析以及方差分析对贡献率的量化,对系统的总能效和年总成本进行了优化。结果表明,电解槽和固体氧化物燃料电池的尺寸增加可分别使系统总能效提高13.635%和2.194%,但也会导致年总成本分别上升4.042×10⁴美元和2.389×10³美元。此外,敏感性分析表明,在影响系统技术经济性能的设计参数中,电解槽尺寸的优先级高于其他参数。电池、电解槽和固体氧化物燃料电池的最优尺寸对应的电池单元数量范围分别为333–403、17–20和26–30,相应的最优总能效和年总成本分别为70.861%–72.147%和6.723×10⁴美元–7.325×10⁴美元。研究成果可为面向低碳区域能源转型的氢能冷热电联供系统设计与运行提供具有技术经济可行性的指导。
English Abstract
Abstract An integrative solid oxide fuel cell combined cooling, heating and power system in green buildings with hydrogen energy of byproduct water enables carbon neutrality transformation. However, underlying mechanisms on capacity sizing of combined cooling, heating and power system devices and its impacts on system techno-economy have not been figured out especially considering dynamic degradation and efficiency of associated devices. In this study, a multi-software optimization platform is established by MATLAB-TRNSYS co-simulation for sizing parametrical analysis, with well balance of modelling complexity and computational efficiency. A self-sufficient combined cooling, heating and power system is modelled integrating with a semi-empirical surrogate model of solid oxide fuel cell to interact with other balance of plant types efficiently. Total energy efficiency and annual total cost are optimized through parametrical analysis on device size of each component (battery, electrolyzer and solid oxide fuel cell) and analysis of variance for contribution ratio quantification. Results indicate that, the size increase in electrolyzer and solid oxide fuel cell will improve system total energy efficiency by 13.635 % and 2.194 %, but promote annual total cost by 4.042 × 10 4 $ and 2.389 × 10 3 $, respectively. Besides, sensitivity analysis indicates that the electrolyzer size prioritizes other design parameters in techno-economic performance. Optimal sizes of battery, electrolyzer and solid oxide fuel cell are in cell number range of 333 – 403, 17 – 20, and 26 – 30, respectively, with corresponding optimal total energy efficiency and annual total cost at 70.861 % – 72.147 % and 6.723 × 10 4 $ – 7.325 × 10 4 $, respectively. The research results can provide guidance on hydrogen-based cooling, heating and power system design and operation with techno-economic feasibility for low-carbon district energy transition.
S
SunView 深度解读
该SOFC冷热电联供系统的多目标优化方法对阳光电源氢能储能系统具有重要借鉴价值。研究中的MATLAB-TRNSYS协同仿真平台可应用于ST系列储能变流器与氢储能设备的容量配置优化,特别是电解槽、燃料电池与PowerTitan储能系统的协调控制策略开发。其半经验代理模型方法可降低iSolarCloud平台中多能互补系统的建模复杂度,提升预测性维护效率。敏感性分析揭示的设备容量对技术经济性的影响机制,可指导阳光电源氢储能产品线的系统集成方案设计,推动零碳园区综合能源解决方案落地。