← 返回
氢能与燃料电池
★ 5.0
探究燃料电池系统空气供给控制对能量管理策略性能的影响
Investigating the impact of a fuel cell system air supply control on the performance of an energy management strategy
语言:
中文摘要
摘要 本研究提出了一种综合性的方法,通过构建系统级能量管理策略(EMS)来优化混合燃料电池(FC)-电池动力系统的性能。该策略采用两级管理和控制架构,旨在提高系统效率、降低氢气消耗并增强动力系统的安全性。第一级为基于优化的EMS,专注于燃料电池与电池组之间的高效功率分配。该方法的关键在于考虑了空气供给系统的约束条件,包括避免压气机特性图中的喘振区以确保压气机的安全运行,以及维持氧气过量比(OER)在最优范围内。通过满足这些约束条件,该策略不仅提高了压气机的运行稳定性,还显著降低了氢气消耗。第二级为控制层,采用自适应PID控制器动态跟踪设定的最优OER参考值。该控制层通过调节压气机电机电压实现对OER的精确跟踪,从而在不同工况下进一步优化动力系统的整体性能。两级策略的结合实现了均衡的功率分配,减少了氢气消耗,并提升了运行安全性,尤其在不同海拔高度和功率需求条件下表现突出。为验证所提策略的有效性,开展了两个案例研究:一是车辆行驶循环工况,二是标准航空任务剖面。在车辆案例中,系统分别在海平面、1000米和2000米海拔进行评估。结果表明,相较于恒定OER为2.0和2.5的情况,采用最优OER在海平面可使氢气消耗降低2.6%至5.1%,在1000米处降低2.4%至4.2%,在2000米处降低1.6%至3.0%。在航空案例中,由于飞行过程中海拔和功率需求均随时间变化,结果表明,相较于恒定OER为2.0和2.5的情形,最优OER分别使氢气消耗降低了1.6%和3.1%。上述结果表明,采用系统化的EMS方法不仅能有效提升燃料利用效率,还能保障系统运行的稳定性。在高海拔条件下,遵循最优OER尤为关键,因为这是在无需过度增大压气机尺寸的前提下维持高效运行的唯一可行方案,否则将导致系统整体性能下降。
English Abstract
Abstract This study presents a comprehensive approach to optimizing the performance of a hybrid fuel cell (FC) battery powertrain through the development of a systemic energy management strategy (EMS). The strategy is designed with two levels of management and control, aiming to enhance the efficiency, reduce hydrogen consumption, and improve the safety of the powertrain system. The first level involves an optimization-based EMS focused on efficient power distribution between the FC and the battery pack. Key to this approach is the consideration of air supply system constraints, which include maintaining safe compressor operation by avoiding the surge zone in the compressor map and ensuring the optimal range for the Oxygen Excess Ratio (OER). By addressing these constraints, the strategy not only improves the stability of the compressor but also minimizes hydrogen consumption. The second level of the strategy is on control, utilizing an adaptive PID controller to dynamically track the imposed optimal OER reference. This control layer adjusts the compressor motor voltage to achieve OER tracking, further optimizing the performance of the powertrain under varying operational conditions. The combination of these two levels results in balanced power distribution, reduced hydrogen consumption, and enhanced operational safety, particularly across different altitudes and power demands. To validate the effectiveness of the proposed strategy, two case studies are conducted: one involving a vehicle driving cycle and another using a standard aircraft mission profile. For the vehicle case, the system is evaluated at sea level, 1000 m, and 2000 m. The findings indicate that the optimal OER reduced hydrogen consumption by 2.6 % to 5.1 % at sea level, 2.4 % to 4.2 % at 1000 m, and 1.6 % to 3.0 % at 2000 m compared to constant OERs of 2.0 and 2.5. In the aircraft case, where both altitude and power demand vary over time, the results showed that the optimal OER reduced hydrogen consumption by 1.6 % compared to a constant OER of 2.0 and by 3.1 % compared to a constant OER of 2.5. These findings reveal the benefits of incorporating a systemic approach to EMS that not only enhances fuel efficiency but also ensures operational stability. At high altitudes, adhering to the optimal OER becomes crucial, as it is the only viable option to maintain efficient operation without the need to oversize the compressor, which would otherwise compromise system performance.
S
SunView 深度解读
该燃料电池双层能源管理策略对阳光电源氢能系统开发具有重要参考价值。其优化型EMS的功率分配逻辑可借鉴至ST储能变流器与氢燃料电池混合系统,通过氧过量比(OER)动态优化降低氢耗1.6-5.1%的思路,可应用于iSolarCloud平台的多能源协调控制算法。自适应PID控制层与阳光现有GFM/VSG控制技术结合,能提升高海拔等极端工况下系统稳定性。该研究为阳光拓展氢储能PCS产品线、开发车载/航空级能量管理系统提供技术路径,特别是压缩机防喘振约束处理可增强系统安全性设计。