← 返回
储能系统技术 储能系统 ★ 4.0

应用相变材料与预测模型优化质子交换膜燃料电池

Applying phase change materials and predictive modeling to optimize proton exchange membrane fuel cells

作者 Iman Sarani · Zhiming Bao · Wenming Huo · Zhengguo Qin · Yanchen Lai · Kui Jiao
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 325 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★ 4.0 / 5.0
关键词 A comprehensive experimental study conducted on a proton exchange membrane fuel cell.
语言:

中文摘要

摘要 全球日益增长的能源需求和环境问题迫切需要在高效、可持续能源技术方面取得重大进展。质子交换膜燃料电池是一种具有前景的清洁能源发电技术。然而,在停机期间存在的性能不稳定性和热管理挑战限制了其实际应用。因此,本研究采用一种综合方法来提升质子交换膜燃料电池的性能与效率。该方法结合响应面法与人工神经网络进行预测建模与优化,并利用相变材料在停机期间维持最佳运行条件。通过实施中心复合设计,评估了温度、压力以及进出口流量等关键运行参数对功率密度的影响。所建立的响应面法模型和人工神经网络模型均表现出较高的预测精度,其决定系数(R²)分别达到98.66%和99.11%。优化结果表明,当温度为79.1 °C、压力为200 kPa、阳极和阴极入口流量均为每分钟5升时,可实现最大功率密度1.71 W cm⁻²。此外,采用相变材料结合隔热层的创新热管理方案,在25 °C环境温度下将工作温度范围维持时间延长至6.43小时,约为仅使用隔热材料的5倍。在-20 °C的低温环境中,该方法使工作温度区间持续时间和高于冰点的时间分别延长了3.5倍和2.7倍。这些研究成果通过改进燃料电池的性能表现和热管理策略,推动了燃料电池技术的发展。

English Abstract

Abstract Rising global energy demands and environmental concerns necessitate significant advancements in efficient and sustainable energy technologies. Proton exchange membrane fuel cells represent a promising technology for clean energy generation. However, performance inconsistencies and thermal management challenges during downtime limit their practical application. Therefore, this study employs a comprehensive approach to enhance the performance and efficiency of proton exchange membrane fuel cells. It leverages response surface methodology and artificial neural networks for predictive modeling and optimization, as well as phase change materials for maintaining optimal conditions during downtime. A central composite design was implemented to evaluate the influence of critical operational parameters, including temperature, pressure, and inlet flow rates, on the power density. The developed response surface methodology and artificial neural networks models demonstrated high predictive accuracy, with coefficient of determination values of 98.66 % and 99.11 %, respectively. Optimization results revealed that a temperature of 79.1 °C, a pressure of 200 kPa, and anode and cathode inlet flow rates of 5 L per minute yielded a maximum power density of 1.71 W cm −2 . Furthermore, the innovative thermal management solution using phase change materials with insulation extended the operating temperature range duration to 6.43 h at 25 °C ambient, nearly 5 times longer than using insulation alone. Additionally, in cold environments at −20 °C, this approach increased the operating temperature range and above freezing point duration by 3.5 and 2.7 times, respectively. These findings contribute to the advancement of fuel cell technology by improving performance and thermal management strategies.
S

SunView 深度解读

该燃料电池热管理与优化技术对阳光电源储能系统具有重要借鉴价值。研究中采用的相变材料(PCM)热管理方案可应用于ST系列PCS及PowerTitan储能系统的温控优化,在环境温度波动时延长最佳工作温度维持时间达3-5倍。响应面法与神经网络预测建模思路(R²>98%)可集成至iSolarCloud平台,实现储能系统多参数协同优化与预测性维护。该温控策略对提升极端气候下储能系统可靠性、延长电池寿命具有实际应用价值,同时可拓展至充电桩热管理场景。